
FP6-IST-002020

COGNIRON
The Cognitive Robot Companion

Integrated Project

Information Society Technologies Priority

D6.1.1
Specification of an architecture for a cognitive robot

Due date of deliverable: 31/12/2004
Actual submission date: 31/12/2004

Start date of project: January 1st, 2004 Duration: 48 months

Organisation name of lead contractor for this deliverable:
LAAS-CNRS

Revision: Final
Dissemination Level: PU



COGNIRON
FP6-IST-002020

Deliverable D6.1.1
31/12/2004

Revision Final

Executive Summary

Our efforts, during this first period, were dedicated to preparatory work for building a robot control
architecture:

• that integrates a probabilistic approach at various levels: comparison of several models for
implementing decision in presence of uncertainty.

• that provides a framework for implementing human-robot interaction in a systematic way

This is based on a study of relevant literature and the investigation of various interaction schemes.

We also developed and accumulated some experience through the construction of human-robot inter-
active scenarios involving a mobile robot, called Rackham, equipped with vision and several interac-
tion modalities (speech, tactile screen, virtual reality).

Role of the topic in Cogniron

Cf. next section.

Relation to the Key Experiments

The work described here will conduct to the development of concepts and algorithms that will be
implemented and illustrated in the Key Experiments: a control architecture for a cognitive robot that
provides a framework for implementing human-robot interaction in a systematic way.

Page 2



COGNIRON
FP6-IST-002020

Deliverable D6.1.1
31/12/2004

Revision Final

1 Topic of the deliverable

1.1 Introduction

The Research Activity 6 deals with system organization, decision-making, task distribution, attribu-
tion of intentionality and expression of robot intentions.

It addresses the decision-making mechanisms that are induced by the demanding context of scenarios
for a personal robot. Two key topics are crucial: (1) evolution and learning in an open environment
and (2) interaction with humans.

This approach requires architectural aspects and decisional abilities to be revisited and adapted to
provide a framework, and to elaborate the models and paradigms that should allow the robot: to take
into account context and user dependencies while performing its tasks to take the initiative, and then
establish and conduct an interactive session with a human to adopt various interaction styles depending
on the context and allow the human to act physically the robot (push, guide...) but also ”influence” its
on-going decisional processes

The main topics that we propose to tackle in a coherent and constructive approach are Control architec-
tures, Context dependent Task refinement, Human-robot interaction, Social interaction, Collaborative
problem solving.

Our investigation will follow two streams that will be developed in close interaction with the other
topics of the project:

• A control architecture for a robot companion

• A scheme for interactive human-robot problem solving.

Workpackage 6.1 deals with the first topic.

The purpose of this workpackage is not to develop a new control architecture. The control architecture
principles that we will apply will be based on the state of the art. Our target is to provide a framework
that will allow to integrate in a coherent fashion context-dependent task refinement and human-robot
social interaction.

This study has been conducted and will be pursued, based on two aspects:

• the necessity to take explicitly uncertainty into account various levels

• the study of the task-oriented human-robot interaction processes induced by the scenarios elab-
orated by the key experiments, in order to have a constructive and convergent perspective.

1.2 Summary of work

Our efforts, during this first period, were dedicated to preparatory work for building a robot control
architecture:

Page 3



COGNIRON
FP6-IST-002020

Deliverable D6.1.1
31/12/2004

Revision Final

• that integrates a probabilistic approach at various levels: comparison of several models for
implementing decision in presence of uncertainty.

• that provides a framework for implementing human-robot interaction in a systematic way

This is based on a study of relevant literature and the investigation of various interaction schemes.

We also developed and accumulated some experience through the construction of human-robot inter-
active scenarios involving a mobile robot, called Rackham, equipped with vision and several interac-
tion modalities (speech, tactile screen, virtual reality).

2 Rackham: an interactive autonomous robot

We have designed and implemented a new tour-guide robot. Besides robustness and efficiency in
the robot basic navigational abilities in a dynamic environment, our focus was to develop and test a
methodology to integrate human-robot interaction abilities in a systematic way.

To test and validate our developments, we have decided to bring regularly our robot to a museum in
Toulouse (by regularly, we mean two weeks every three months). The robot, called Rackham, has al-
ready been used in an exhibition for hundreds of hours (July 2004, October 2004), accumulating valu-
able data and information for future enhancements. The project is conducted so as to incrementally
enhance the robot functional and decisional capabilities based on the observation of the interaction
between the public and the robot.

The paper, in the annex, presents the robot and some of its key design issues. It also discusses a
number of lessons that we have drawn from its use in interaction with the public. and that will serve
to refine our design choices and to enhance the robot efficiency and acceptability.

The software architecture is an instance of the LAAS1 architecture ([1]). It is a hierarchical architec-
ture including a supervisor written with openPRS2 (a Procedural Reasoning System) that controls a
distributed set of functional modules.

A number of features have been installed for human-robot interaction:

• the detection of dynamic “obstacles” ,

• a vision-based face detector,

• an animated face with speech synthesis,

• displays and inputs from the touch screen,

• control of robots lights.

While the two firsts allow to detect the presence or the departure of people, the last ones permit the
robot to “express” itself and thus establish exchanges.

1LAAS stands for: “LAAS Architecture for Autonomous Systems”.
2The set of tools used to build an instance of this architecture (GenoM, openPRS, pocolibs, etc) are freely distributed at

the following url: http://softs.laas.fr/openrobots.

Page 4



COGNIRON
FP6-IST-002020

Deliverable D6.1.1
31/12/2004

Revision Final

Figure 1: The functional level of Rackham and its 15 modules.

The vocal synthesis is highly enriched by a 3D animated head displayed on the screen. This talking
head, orclone , is developed by the Institut de la Communication Parlee (http://www.icp.inpg.fr).
It is based on a very accurate articulatory 3D model of the postures of a human speaker with real-
istic synthetic rendering thanks to 3D texture projection. From a given text, the speech synthesizer
produces coordinated voice and facial movements (jaw, teeth, lips, etc.).

The directions of the head and of the eyes can be dynamically controlled. This capability is important
as it allows to reinforce an interaction, looking towards the interlocutor face detected , or to point out
an object or a part of the exhibition currently mentioned by the robot.

The clone appears in front of the touch-screen each time the robot has to speak.

Page 5



COGNIRON
FP6-IST-002020

Deliverable D6.1.1
31/12/2004

Revision Final

3 Specification of an architecture for a cognitive robot

We discuss in the following several questions of interest from the literature as well as from our expe-
rience in developing an interactive autonomous robot.

3.1 The context representation

Control architectures have been a very hot subject in the past decade. This debate has now reached a
certain level of maturity. However, there are still several open issues.

It is said in ([17, 10]) that one of the problem of the three level architecture is that “each level has its
own representation and thus several different models of the robot and its environment must be created
and maintained. This representation of information storage is often redundant and causes additional
overhead in maintaining the system over time”.

We do not think that the problem lies in the three layer architecture itself. It may happen if the infor-
mation is not available at the right level because it is hidden in some process or has been considered a
priori as non relevant. This was exhibited, for instance, in the tour-guide robot implementation.

The lessons drawn showed that it was a priori useful to provide as much context information as possi-
ble to the robot supervision level. Indeed, context-based task refinement is essential for autonomous
robots but even more for cognitive robots in human environments.

Another aspect that we have begun to tackle in the ability to integrate learning capabilities [8] in a
modular general-purpose robot architecture.

3.2 Human-robot interaction

The Interaction strongly depends on the persons the robot interacts with. The robot needs to model
the interacting person in terms of abilities, preferences, etc..

The Joint Intention theory [4, 5] is an interesting concept to model how a robot may cooperate with
humans (as a team member). It has been applied in robotics application [3], or even in situations where
the activity of heterogeneous agents (persons, robots, software agents) [13, 14] has to be coordinated.

This theory defines that, for a teamθ a joint intentionJPG(θ, p, q) holds iff :

1. All team members mutually believe thatp is currently false.

2. All team members havep as their mutual goal, i.e. they mutually know that they wantp to be
eventually true and that its relevance is expressed by a scalar valueq.

3. All team members mutually believe that untilp is mutually known to be achieved, unachievable
or irrelevant, they mutually believe that they each holdp as a weak achievement goal (WAG).

For team memberµ, WAG(µ, p, q, θ) implies that one of the following holds :

Page 6



COGNIRON
FP6-IST-002020

Deliverable D6.1.1
31/12/2004

Revision Final

• µ believesp is currently false and wants it to be eventually true, i.e.p is a normal achievement
goal or

• having privately discoveredp to be achieved, unachievable or irrelevant (becauseq is false),µ
has committed to having this private belief becomeθ’s mutual belief.

Notice thatmutual beliefis an interesting notion in itself, representing what an agent believes about
what the other believes. It should be implemented somehow at the robot level in order to allow us to
model what the robot knows the human knows about it. For instance, if the robot knows the person it
interacts with does not know what it is able to do and what it currently does, it has to give much more
information, explanation than otherwise.

One recent generic implementation of the joint intention theory is Machinetta [14]. In this implemen-
tation each team member has a “proxy” that represents it in team collaboration. The Machinetta proxy
software is made up of five components :

• Communication: communication with other proxies

• Coordination: reasoning about team plans and communication

• State: the working memory

• Adjustable autonomy: reasoning about whether to act autonomously or pass control to the team
member

• RAP (robots, agents and people): communication with team member.

A team of proxies implements “Team Oriented Plans” (TOPs), a team-level description of the activi-
ties that need to be performed in order to achieve the goals of the team.

This is certainly a rich source of inspiration for us in our construction of a framework for human-robot
decisional interaction. Each person or group of persons that the robot decides to interact with may be
modeled by it as particular instance of an agent, with specific information about its desires, intentions
and goals. Such information will be acquired and maintained through perception and communication
(in a large sense). However, we will discuss next what differences we see concerning a robot acting
in a real world particularly versus the human agent commitment.

3.3 Task achievement

Once the robot knows what it has to do, comes the execution time. The execution of an action/task
must be as flexible as possible. It heavily depends on the execution context and consequently it has
to be defined at a (sufficiently high) level that allows to take into account the execution context at the
right moment.

Let us take, for instance, task “communicate an information to a person i’m committed with”. The
communication mean itself whether the atmosphere is noisy or quiet, whether the robot has to talk
to one person or to a group... What we argue is that the action in the plan has to be at the level of:
“communicate an information to the people”,that is effectively the goal it is committed to. But at

Page 7



COGNIRON
FP6-IST-002020

Deliverable D6.1.1
31/12/2004

Revision Final

the execution time the robot have to be able to choose the best manner to realize this task given the
context.

The task is performed following a policy (by policy we mean “a solution that specifies what the
agent should do foranystate that the agent might reach”). Considering the complexity and the means
available for the task, this policy could be a simple finite state automaton or a complex POMDP policy,
computed on-line or offline according to the robot perception and action abilities.

Indeed, in accordance with [2, 16], decision-theoretic planning in general and Partially Observable
Markov Decision Process in particular are the standard mechanism of choice for representing prob-
lems where an agent must reason under uncertainty. POMDPs allow for optimal reasoning under the
conditions of both action and state uncertainty. Action uncertainty exists when an agent only knows
a probability distribution over the possible outcomes of its actions. State uncertainty exists when the
observations about the world available to an agent do not provide the exact world state, but rather
indicate a probability distribution over the possible states. It is this state uncertainty that both allows
POMDPs to represent realistic problems and causes significant computational complexity.

To deal with this complexity, hierarchical representations have been proposed. For instance, Pineau’s
work [11] provides an algorithm for finding approximate solutions to POMDPs through action ab-
straction. Theocharous’s work [15] is based on a state abstraction. Action hierarchy allows to plan
at different levels of abstraction whereas state hierarchy allows to consider only the given or relevant
information in a particular context.

3.4 Architecture framework

For an interactive robot, if we want to build it in a generic re-usable way, it is necessary to implement
an ”explicit meta-level”, i.e. a level which will allow to reason explicitly on its ability and the human
ability (in a given context and application) and with an explicit management of the interaction.

We will build such a meta-level by an adaptation of the joint intention theory to our needs.

The robot and the human: In the Joint Intention Theory, as we have see before, once a team
member commits to a joint goal, it is also committed to maintain mutual belief towards the other team
members about this goal.

The fact that an agent, in our system, could be a human will change many things. One of the most
important is that when a human commits to some goal, he will not regularly inform the robot when it
considers the goal achieved for him or when he wants to cancel his commitment. So, depending on
the “trust” the robot will have the person, the degree of collaboration needed, etc, the robot will have
to check by itself (through various modalities) whether the goal is still alive or not.

The robot decisional kernel will implement agents that will be a way to represent the beliefs and mu-
tual beliefs of the humans. We propose to call them “interaction-agents”. It will be in fact the human
representation (at decisional level) for the robot. Even if a human intervention must be preemptive, it
will just have a reinforcement role.

Page 8



COGNIRON
FP6-IST-002020

Deliverable D6.1.1
31/12/2004

Revision Final

An interaction-agent: An “interaction agent” will be created when the robot detects a person or a
group of persons. This interaction-agent will be instantiated with the current knowledge the robot has.

The robot will have several models of an interaction-agent. Such models will include: the means of
communication, the actual level of commitment, It will also include information such as :

• type: a group or not, kid

• identification: do i know this person

• communication abilities

• confidence

• commitment

• ...

At the beginning, at the agent creation when the robot has no knowledge about the person, the model
will express only the basic properties of a human in the given context.

An important point concerning the interaction agent is that its not a static agent but a way for the robot
to represent its beliefs and their evolution over time (whether i am engaged with this person or not...).

Commitment establishment An procedure to establish commitments will be launched if:

• an interaction-agent asks something to the robot,

• the robot has another goal (a very high-level general goal that defines its basic utility functions)
and based on this goal it decides to engage with an interaction-agent.

The robot has to consider if it can do things by itself or if it need to trigger a joint plan.

During the procedure of commitment establishment, each partner (the human, the robot) can commit
or deny. The procedure by itself may have various modalities and may be quite trivial (the simple
creation of the goal, everyone ever knowing what he/it has to do) or may call for the joint elaboration
of a plan with associated role allocation (see Deliverable 6.2.1).

The joint goal In fact we use the term joint goal in a very large sense, that is in fact every goal of
the robot will be a commitment towards somebody (towards the software engineer at a basic level)

Once the goal is created, the robot accomplishes its part (almost all of the task) and if needed, checks
the commitment of the human (particularly when it is a collaborative task, ex: the human must follow
the robot to go somewhere). The robot has to check the human commitment which is by definition
only partially observable.

Page 9



COGNIRON
FP6-IST-002020

Deliverable D6.1.1
31/12/2004

Revision Final

3.5 An example from the “curious robot” scenario

We illustrate here below some examples borrowed from Key experiment 2.

In script 1: Robot initiative, the robot anticipates a situation that may occur and acts in order to
facilitate the future action of the person.

A person is sitting and busy with a task. The robot is doing its own tasks and also observes the human
who would be doing some gestures, not meant towards the robot, which usually express a need for a
drink (for example, the human “plays” with an empty cup).

• First case: the robot interrupts its own task, approaches the human and asks her if she wants a
drink. Upon a positive answer, the robot fetches it.

• Second case: the robot does not ask.

• Third case: there is already a can on the table, but it is too far to be reached by the person. The
robot takes the initiative to place it closer to the person.

We will now explain how this three cases may be dealt with, based on the framework discussed above.

First case: The robot creates an interaction-agent when it detects the person sitting and busy with a
task. It has limited knowledge about the person. Consequently, it will interact with her using the basic
social rule of human-robot interaction. So taking the initiative, it tries to establish a commitment with
the person, asking her before doing anything else. Upon a positive answer, it creates a joint goal: it is
committed to bring a drink and the person is committed to want a drink to be brought to her.

In the current context, the robot considers that the best way to bring a drink is to fetch it from refriger-
ator and it does. A negative gesture from the person during the phase where the robot hands the drink
suspends or even stops the global goal.

Second case: The robot creates an interaction agent when it detects the person sitting and busy with
a task. It then recognizes Bill. It knows Bill and knows how to interact with him. So taking the
initiative, and knowing how to interact with Bill, the establish commitment phase creates a joint goal
without asking Bill: the robot is committed to bring a drink and Bill is committed to want a drink to
be brought. The establish commitment phase in this case will be transparent to Bill. In the current
context, the robot considers that the best way to bring a drink etc ..

Third case: The robot creates an interaction-agent when it detects the person sitting and busy with
a task. It has limited knowledge about the person. Consequently, it will interact with here using the
basic social rule of human-robot interaction. So taking the initiative, it tries to establish a commitment
with the person, asking her before doing anything else etc..

In the current context, there is already a can on the table (but it is too far to be reached by the person)
the best way to bring a drink is to place it closer to the person.

Page 10



COGNIRON
FP6-IST-002020

Deliverable D6.1.1
31/12/2004

Revision Final

4 Future Work

In the next period, we will refine the proposed concepts and investigate their applicability. This will
be done on the basis of contexts and tasks defined in the key experiments (essentially KE 1 and KE 2)

The second workplan will aim at designing and developing an architecture based on these key ideas
and that will also take into account considerations studied in WP6.2 and WP6.3. Indeed, it will
be necessary to export the essential supervision data (e.g. current goals, tasks, current task/subtask
hierarchy, main control parameters...) that may be used in cooperative problem solving or to exhibit
robot intentions.

Another aspect that has not yet been tackled is linked to the initiative issues.

The last point is the coordination with RA1, RA4 and RA5 in order to build a framework able to incre-
mentally include representations of environment knowledge and task knowledge that are elaborated
within the project.

Page 11



COGNIRON
FP6-IST-002020

Deliverable D6.1.1
31/12/2004

Revision Final

5 References

References

[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, F. Ingrand, “An architecture for autonomy”,Inter-
national Journal of Robotic Research, Vol.17, N◦4, pp.315-337, Avril 1998.

[2] Craig Boutilier and Thomas Dean and Steve Hanks, “Decision-Theoretic Planning: Structural
Assumptions and Computational Leverage,”Journal of AI Research (JAIR), 1999.

[3] C. Breazeal, et.al., “Humanoid robots as Cooperative partners for people” Submitted to
IJHR(2004).

[4] P.R. Cohen and H.J. Levesque. “Intention is choice with commitment”.Artificial Intelligence,
42(3), 1990.

[5] P.R. Cohen and H.J. Levesque. “Teamwork”’.Nous, 25(4), 487-512.

[6] S.Fleury, M.Herrb, R.Chatila, “GenoM: a Tool for the Specification and the Implementation of
Operating Modules in a Distributed Robot Architecture”,IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Grenoble, France, 1997.

[7] T. Fong, I. Nourbakhsh, K. Dautenhahn, “A survey of socially interactive robots,”Robotics and
Autonomous Systems, Special issue on Socially Interactive Robots, 42(3-4), 2003.

[8] Steffen Knoop, Steffen Vacek, Raoul Zollner, Christian AU, Rudiger Dillman,“A CORBA-Based
Distributed Software Architecture for Control of Service Robots”,IROS 2004.

[9] N. Muscettola, G. Dorais, C. Fry, R. Levinson, C. Plaunt, “IDEA: Planning at the Core of Au-
tonomous Reactive Agents” inProceedings of the 3rd International NASA Workshop on Plan-
ning and Scheduling for Space, October 2002.

[10] I.A.D. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T. Estlin, “CLARAty and Challenges of
Developing Interoperable Robotic Software,”IROS’03 International Conference on Intelligent
Robots and Systems, Nevada, October 2003.

[11] J. Pineau and S. Thrun. “An integrated approach to hierarchy and abstraction for POMDPs,”
Technical Report CMU-RI-TR-02-21, Carnegie Mellon University, 2002.

[12] S. Russell and P. Norvig,Artificial Intelligence : A Modern Approach,Prentice Hall, 2003.

[13] M. Tambe. “Agent architectures for flexible, practical teamwork”.Journal of Artificial Intelli-
gence Research, 7, 83-124.

[14] P. Scerri and D. Pynadath and N. Schurr and A. Farinelli and S. Gandhe and M. Tambe. “Team
Oriented Programming and Proxy Agents: The Next Generation”, In Proceedings of 1st interna-
tional workshop on Programming Multiagent Systems, Springer, LNAI 3067, 2004.

[15] Georgios Theocharous, Kevin Murphy, Leslie Kaelbling, ‘’Representing hierarchical POMDPs
as DBNs for multi-scale robot localization,”ICRA’04 (Intl. Conf. on Robotics and Automation)
, New Orleans, LA, USA, 2004.

Page 12



COGNIRON
FP6-IST-002020

Deliverable D6.1.1
31/12/2004

Revision Final

[16] Turkett, Jr., W. and Rose, J. , “Planning With Agents: An Efficient Approach Using Hierarchical
Dynamic Decision Networks,”Proceedings of the Fourth International Workshop on Engineer-
ing Societies in the Agent World, London, England, 2003.

[17] R. Volpe and I.A.D. Nesnas and T. Estlin and D. Mutz and R. Petras and H. Das, “CLARAty:
Coupled Layer Architecture for Robotic Autonomy,”JPL Technical Report D-19975, Dec 2000.

5.1 Reference documents

• Deliverable D.6.2.1, “Report on Paradigms for Decisional Interaction”, Cogniron.

• Deliverable D.7.1.1 on Cogniron Key Experiments.

Annexes

• Paper presented at IROS 2004: “A CORBA-Based Distributed Software Architecture for Con-
trol of Service Robots”, Steffen Knoop, Steffen Vacek, Raoul Zollner, Christian AU, Rudiger
Dillman.

• Paper submitted to ICAR 2005: “Supervision and Interaction: Analysis from an Autonomous
Tour-guide Robot Deployment”, Aurelie Clodic, Sara Fleury, Rachid Alami, Matthieu Herrb,
Raja Chatila.

Page 13



Supervision and Interaction
Analysis from an Autonomous Tour-guide Robot Deployment

Aurélie Clodic, Sara Fleury, Rachid Alami, Matthieu Herrb, Raja Chatila
LAAS - CNRS

7, Avenue du Colonel Roche,
31077 Toulouse, France

Email: Aurelie.Clodic@laas.fr, Sara.Fleury@laas.fr, Rachid.Alami@laas.fr, Matthieu.Herrb@laas.fr, Raja.Chatila@laas.fr

Abstract— This paper presents the design and the implemen-
tation of a new tour-guide robot and reports on the first results
that have been obtained after its deployment in a permament
exhibition. The project is conducted so as to incrementally
enhance the robot functional and decisional capabilities based
on the observation of the interaction between the public and the
robot.

Besides robustness and efficiency in the robot basic nav-
igational abilities in a dynamic environment, our focus was
to develop and test a methodology to integrate human-robot
interaction abilities in a systematic way.

We first present the robot and some of its key design issues.
Then, we discuss a number of lessons that we have drawn from
its use in interaction with the public. and that will serve to
refine our design choices and to enhance the robot efficiency and
acceptability.

I. I NTRODUCTION

Today, one of the challenges of robotics is to have robots
that achieve long terms missions outside of their laboratories
and are actually helpful to human.

Rhino[4] and Minerva[17] have been the precursors of series
of tour-guide robots in various museums and exhibition halls
[15], [11]. Those robots had various degrees of autonomy and
were using more or less sophisticated techniques. However,
they have all pointed out that studying human-robot interaction
was necessary, in its definition as well as its implementation.

It has standed out that robots must obey to some “social”
clues [6]. And it has led to the development of service robots
(e.g. Pearl [12], Care-O-bot II [7], CERO [8], Lino [9] and
BIRON [19]).

To study human-robot interaction, an experimentation envi-
ronment must be found, out of a laboratory and its standard
rooms and halls. . . and its robotics scientists who know very
well how their ”creations” work. To test and validate our
developments, we have decided to bring regularly our robot
to a museum in Toulouse (By regularly, we mean two weeks
every three months). The robot, called Rackham, has already
been used in an exhibition for hundreds of hours, accumulating
valuable data and information for future enhancements. The
project is conducted so as to incrementally enhance the robot
functional and decisional capabilities based on the observation
of the interaction between the public and the robot.

Besides robustness and efficiency in the robot basic nav-
igational abilities in a dynamic environment, our focus was

to develop and test a methodology to integrate human-robot
interaction abilities in a systematic way.

In this paper, we describe this tour-guide robot. We begin
with a presentation of the exhibition context. Next, we presents
the LAAS architecture([1]) and the various tools already
developed by our group to implement an instance of it for
Rackham. After, we present the means to supervise all the
system, to finish with experimental results, comments and
analysis.

II. T HE EXPERIMENTAL CONTEXT AND SCENARII

A. Mission Biospace

Mission BioSpace is an exhibition elaborated by the “Cité
de l’Espace”1 at Toulouse to illustrate what could be an
inhabited spaceship. It presents about 14 interactive elements
from “Lexigraph” to “Teleportation” that propose visitor a
vision of the futur.

Fig. 1. The Tsiolkovski spaceship: A very difficult environment context for
navigation.

B. A difficult context for navigation and interactions

The exhibition is simulating the interiors of a spaceship
(25x10 square meters) with all its visual and acoustic at-
mosphere. Hence it presents itself as a difficult context for
navigation and interaction (see picture 1):
• ambiant noises : speech synthetisis is difficult to hear
• the room is dark with changing colors : camera vision

and face detection. . .
• round shapes everywhere, not easy to deal with using a

model based on line segments

1http://www.cite-espace.com



• top and down prominent obstacles: not visible by the
sensors and they can be hit by the head or the bottom
part of Rackam

• some translucent obstacles : not perceived by the laser
range finder

• Some narrow passages, which require a precise position-
ning of the robot to navigate through them

C. A typical Rackham mission

When Rackham is left alone with no mission, it looks
forward to find out people to interact with. As soon as a person
is detected, thanks to visual face detection, it presents itself
through the virtual 3d face “I’m Rackham and I can guide
you in the spaceship” or alternatively explains how to use its
services : “Select your destination using the touchscreen”.

If the visitor finally selects a destination Rackham first
confirms its new mission “OK, I will guide you to. . . ” and
plans the adequate trajectory. Once available, this trajectory is
displayed on the screen and Rackham invites people to follow
it.

While navigating, the robot keeps on giving information
about the progress of the on going travel : a congestion will
require to temporarily stop or even to compute an alternative
trajectory while a given level uncertainty on the position might
call for a relocalisation procedure; sporadic “disappearance”
of the guided visitor are also detected and dealt with using
declarations such as ”Where are you ?”,”Here you are again!”.
The visitor may by himself stop and change the ongoing
mission whenever he wants using various buttons displayed
on the interface.

III. R ACKHAM

A. The robot

Rackham is a B21r robot made by iRobot. It is a cylindar
robot 4’ (52cm) tall and with a diameter of 20” (118cm). It
integrates 2 PCs running respectively one P3 at 800MHz and
two P3 at 1GHz. We have extended the standard equipement
with one pan-tilt sony camera EVI-D70, one digital camera
mounted on a Directed Perception pan-tilt unit, one ELO touch
screen, a pair of loudspeakers, an optical fiber gyroscope and
wireless ethernet.

In order to integrate all these components in a robust and
pleasant way the “Cité de l’Espace” has designed a “head”
on a mast, the whole toped by an helmet which represent
something between a one-eyed modern pirate and an african
art statue (see picture 2). The eye is materialized by the EVI-
D70 camera fixed upside-down above the helmet, the second
camera is hiden in the helmet and one loudspeaker is within
what represent the mouth. The “nose” is only decorative (see
picture 6).

The mast has been designed as high as possible to keep
away the cameras from children hands.

Fig. 2. Rackham and its equipement.

B. The software architecture

The software architecture is an instance of the LAAS2

architecture ([1]). It is a hierarchical architecture including
a supervisor written with openPRS3 (a Procedural Reasoning
System) that controls a distributed set of functional modules.

A module is an independent software component that can
integrate all the operational functions with various time con-
straints or algorithm conplexity (control of sensors and actu-
ators, servo-controls, monitorings, data processings, trajectory
computations, etc.).

Each module is created using the generator of mod-
ule GenoM and thus presents standard behavior and in-
terfaces (see [5] and footnote 3). The functions encapsu-
lated in a module can be dynamically started, interrupted or
(re)parameterized upon asynchronous standard requests sent
by the supervisor.

Once started, a service runs autonomously. A final reply that
qualifies how the service has been executed is returned to the
supervisor with the end of the service. During the execution
a module can export data in structured public entites call
posters and read data from posters produced by other modules
(eg, robot positions, trajectories, maps and so on). The set
of posters represent a distributed database of the state of the
functional level of the architecture.

For the considered application, we have implemented 15
modules. We now present them according to their purpose in
the system (see figure 3).

1) Localization: Several modules are involved in the local-
ization of the robot.

2LAAS stands for: “LAAS Architecture for Autonomous Systems”.
3The set of tools used to build an instance of this architecture

(GenoM, openPRS, pocolibs, etc) are freely distributed at the following url:
http://softs.laas.fr/openrobots.



Fig. 3. The functional level of Rackham and its 15 modules.

First therflex module, which interface therflex driver
provided by iRobot, exports in a poster the position computed
by the odometry and corrected by the gyroscope. This posi-
tion is associated with a covariance matrix deduced from a
probabilistic model error. This position gives a good estimate
of the motions of the robot.

To localize itself within its environment the robot uses a
SICK laser, controlled by the modulesick , that exports at
the required rate the laser echoes, and segments deduced from
aligned echoes. Another module,segloc , is able to match
these segments with segments previously recorded in a map
thanks to a classical SLAM procedure. However the map is
effectively updated only during closing time. The resulting
map is composed of 232 segments (see figure 4).

Fig. 4. The map of the environment build by the Rackham contains 232
segments (black) and has been augented with virtual obstacles (green or
darkgrey) and target zones (lightgray).

The localization beeing a very critical hability, a third
localization procedure, based on vision, has been designed. It
consists on the identification of the furniture of the spaceship
with one color camera. The camera is controled by the
modulecamera that produces images themselves analysed by

the moduleluckyloc that extracts, identifies and localizes
planar quadrangles. However, ifluckyloc is already able
to identify the various pieces of furniture, the localisation
procedure is not yet totally functional.

Finally, the various uncertain positions exported by the
modules rflex , segloc and luckyloc are merged by
pom, the position manager module. The modulepom is able to
integrate positions computed at various frequencies and even
to propagate “old” position data (because of the time taken to
acquire and process the data). Various fusion strategies can be
selected like Kalman fusion or integration of the measured mo-
tions relatively to the most confident positions. The supervisor
can be informed in case of localization problems with one of
the module, fusion difficulties or significant uncertainties on
the position. According to the problem, various strategies are
applied.

It is important to notice that thepom module allows to
centralize the robot positions and to export one and only
one reference position. All the others parts of the system do
not need to care how this position is obtained. This proce-
dure can change dynamically without disturbing the position
consumers. It is a very a important mechanism to manage
redundancy, an essential feature for this critical function.

On top of this geometric positioning, several topological
zones corresponding to places of special interest (“TAR-
GETS”), to dangers for the navigation (“OBSTACLES” not
always visible by the robot sensors like prominent or transpar-
ent furniture), or to other special areas (“SPECIAL”) has been
defined in the environment. Thezone module continously
monitors the entrances and the exits of the robot from these
zones and informs the supervisor.

2) Obstacles and people detection:The obstacle detection
is also a very critical function both for security reasons and for
interaction purposes. The most efficient sensor is once again
the laser. However the laser can only look forward (over 180
degrees) in an horizontal plan and echoes are poor data.

To overcome part of these limitations, the laser data are
integrated in a local map by theaspect module and filtered
using knowledge about the map, its segments and the virtual
obstacles. In the context of Mission BioSpace with prominent
and see-through obstacles this notion of virtual obstacles is
very important.

Finally aspect exports every 40 miliseconds a local map
all around the robot which represents the free space and which
distinguishes static (ie, that belong to the environment or the
virtual obstacles) and dynamic obstacles (probably visitors).

This local map is permanently displayed on the bottom right
of the interface (see figure 5).

Using this representation,aspect is able to inform the
supervisor when the robot is surrounded by unpredicted ob-
stacles. The red leds on the helmet flicker at a frequency
proportional to the obstruction density by dynamic obstacles.

To reinforce the assumption of presence near the robot,
the supervisor can use the services of thesono module
that detects motion all around the robot using the ultrasonic
sensors. Unfortunatly those ultrasonic sensors produce some



audible(!) noise which seem to disturb visitors interacting with
the robot.

A much more robust people detector is offered by the
module calledisy (or, “I See You”) which is able to detect a
face in real time from one color camera image. The detector
uses a cascaded classifier and a head tracker based on a particle
filter (see [3]).

Isy controls the camera orientation in order to follow the
detected face as long as possible. It informs the supervisor
when it catches or looses a face. It is not (yet) a real tracking
procedure but the detection procedure being fast (xxHz) the
bahavior is very satisfactory.

From the direction and the size of the face it is able
to estimate the 3D position of the detected person with a
sufficient precision (about 10cm for the height and 20cm for
the range).

The very weak and color changing sourrouding lights were
a real problem. Thanks to a ring of white leds fixed around
the lens the range of the detection is about 3 meters.

3) Trajectory and motion:Rackham being a guide, it must
be able to take visitors to interest places of the exhibition.
These places are displayed on the interactive map. For the
robot they are not just a cartesian point but atarget zone
(see §III-B.1) made of a polygonal zone, the position the
element of interest of this place (which can be itself out of
the polygon) that the robot will have to comment, and an
indicative target position within the zone.

The robot motion implies mainly three modules :

• rflex that manages the lower servo-control loop, trans-
miting the reference speeds at the micro-controller. It also
checks the freshness of the produced references.

• ndd integrates a local avoidance procedure based on an
algebraic instance of Nearness Diagrams (see [10]). The
input obstacles are the those of the aspect map (see§III-
B.2).

• vstp is a Very Simple [but very efficent] Trajectory
Planner based on an algebraic visibility graph opti-
mized with hash tables4. A main visibility graph is
pre-computed for the static segments of the map. The
dynamic obstacles can be added and removed in real-
time upon supervisor requests.

The strategy used to coordinate the implied modules is
dynamically established by the supervisor. The objective is of
course to reach the target zone while avoiding obstacles. The
planned trajectory is an Ariadne’s clew forndd : the vertices
of the broken line are sub-goals. Usally the supervisor has to
intervene only ifndd does not progress anymore along this
path. In such a case, the strategies could be various: computing
of a new trajectory taking into account the uncountered obsta-
cles, waiting for a while, starting an interaction with people
arround, etc. The motion is over when the robot is inside the
target zone (the indicative target position can be occupied by
visitors).

4VSTP is freely distributed: http://softs.laas.fr/openrobots/.

The maximum speed that the robot can achieve in this mode
is about 0.6 meters per second.

4) Interactions: For now the interactions are mainly estab-
lished through the following components:

• the dynamic “obstacles” detectors (aspect andsono ),
• the isy face detector,
• an animated face with speech synthetisis,
• displays and inputs from the touch screen,
• control of the robots’ lights.

While the two firsts allow to detect the presence or the
departure of people, the last ones permit the robot to “express”
itself and thus establish exchanges.

The vocal synthesis is highly enriched by a 3D animated
head displayed on the screen. This talking head, orclone ,
is developped by the Institut de la Communication Parlée
(http://www.icp.inpg.fr). Their initial motivations were the
communication for hard of hearing (thus well adapted in noisy
environments!). In robot context, the hability to interact with
an animated and human-like entity participate hightly to the
quality and the richness of the communication.

The clone is based on a very accurate articulatory 3D model
of the postures of a speaking locutor with realistic synthetic
rendering thanks to 3D texture projection. From a given text,
the speech synthetizer produces coordinated voice and facial
movements (jaw, teeth, lips, etc.).

The directions of the head and of the eyes can be dynam-
ically controlled. This capability is important as it allows to
reinforce an interaction, looking towards the interlocutor face
detected byisy , or to point out an object or a part of the
exhibition currently mentioned by the robot.

The clone appears in front of the touchscreen each time the
robot has to speak (see picture 5.

Fig. 5. A view of the interface of the touchscreen.

The robot interface, written with java, is made of inde-
pendant components or microGUI directly controlled by the
supervisor through a dedicated communication channel.

The available microguis are :

• a map of the environment including the current robot
position and trajectory

• the local “aspect” map displayed as a radar



• the image of the “eye” camera with the faces currently
detected by isy

• the clone or talking head
• pop-up warning messages
• top messages
• localization window (init).

The data flow is directly coming from the posters of the
modules after an automatic transcription by GenoM in anxml
format of the data.

5) Controls of the functional level:This set of modules
offers a good degree of redundancy for several functions as
shown on figure below. It greatly helps in making the robot’s
behavior robust, and provide tools for the supervisor to adapt
itself to a large set of varying situations

IV. SUPERVISION

A. General description

Rackham is used in a context where there is no need for
a high level planner i.e. a system that synthesizes a partially
ordered set of tasks to be performed to reach a given goal.
Consequently, the highest level of decision is to select what
task to achieve. Indeed, the robot is able to perform a number
of tasks in a variety of contexts and depending on various
conditions (availabilty of visitors, energy level. . . ).

Hence, the role of the robot supervisor involves several
aspects:

• task selection,
• context-based task refinement,
• adaptive task execution control.

In its current configuration, Rackham, as a tour-guide in
the exhibition, has basically to deal with two different tasks:
the search for interaction(where the robot, left alone in the
exhibition, tries to attract a visitor in order to interact with
him), the mission(where the robot, according to the visitor’s
choice, brings him to a selected place).

Depending on the context and the level of abstraction, the
task execution is based on three aspects:

1) the definition of a state space, an action space and the
construction of a policy5,

2) the construction of robot primitives (based on the action
space definition),

3) the execution of the policy and the control of this
execution.

Various schemes are proposed in the literature in order to
refine and execute robot tasks in the presence of uncertainty.
Mainly they partition the state space [16] , or the action space
[13], or both [18].

We do not intend to discuss here the various means that
may be used to build policies. What we want to stress is
the importance of the models (variables, primitive actions and
their parameters, primitive observations) and the ability to
decompose them. One key aspect is to construct efficient and

5by policy we mean : “a solution that specifies what the agent should do
for any state that the agent might reach” [14], no matter the way it has been
computed or deduced

robust motion execution primitives that are able by themselves
to deal with local contingencies. This allows to reduce the
burden of the higher levels and limits the complexity of the
associated policy.

Our choice was to use relatively low level observation
and action primitives in order to leave as much flexibility
as possible at the policy level. Indeed, as we will see in
the sequel, the performance of tasks in the vicinity and/or in
interaction with humans is not compatible with a “blackbox”
strategy.

Another interesting aspect on which we focus is how the
task execution process is influenced by the need for human-
robot interaction.

B. Executing tasks in presence of humans

When a task is given, our robot not only needs to execute
it, but it also needs to be able to explain it (by exhibiting a
legible behaviour or by displaying relevant information) and it
should allow humans to act on the course of its actions during
their execution.

For instance, during themissiontask, Rackham should not
only be moving toward its goal and avoiding obstables, it also
has to maintain the interaction with the humans (waiting for
possible inputs like abort or change the mission and displaying
any relevant information that may be needed).

There are a number of speech-based or visualisation-based
functions that allow to give feedback to the user mainly in
terms of messages. Other information such as trajectory, robot
position, etc, are displayed directly by the interface as soon
as there are available nearby the modules (without direct
intervention of the supervisor, we will go back to this point
in section V-C.2).

Possible robot actions can be partitioned in two sets:

• navigation related actions: trajectory planning, trajectory
following, motion trajectory suspend, motion trajectory
resume, motion trajectory stop, change speed, re-initiliaze
position manager, re-initiliaze position estimator, end,
wait, error.

• interaction related actions: we do not explain here all
the actions because there are many of them, but funda-
mentally they are of three kinds: actions explaining the
current navigation action (one for each navigation action),
actions explaining the state of the robot (“I’m lost.”, “We
are blocked”,. . . ) and actions trying to engage people with
the robot (“follow me !”, “Please free the way before me
to help me relocalize”).

The action selection is essentially performed on the basis
of a common state space. Three state variables are needed:

• localisation quality : good, average, bad
• trajectory : unavailable, available, error
• move: nothing, begin, moving, blocked, error, stopping,

stop, ended

This state space is an abstraction, for the supervision, of
the modules feedbacks. For instance, if thezone module
has already notified an entrance in the target zone, then the



TABLE I

EXAMPLE OF POLICIES UNROLLING FOR THEmissionTASK

move trajectory localisation navigation action interaction action
nothing unavailable good trajectory planning explain action
nothing available good trajectory following wait
begin available good wait follow me !

moving available good wait wait
(...) (...) (...)

moving available bad motion trajectory stop explain state
stopping available bad wait explain state

stop unavailable bad re-init position managerask freeing the way
(...) (...) (...)

moving available good wait wait
blocked available good motion trajectory stop explain state
stopping available good wait explain state

stop unavailable good wait explain state
nothing unavailable good trajectory planning explain action

notification of the end the motion byndd module will switch
the value ofmove to ended.

Considering that the two activities, navigation and inter-
action, are of different nature and that one can speak and
move at the same time, we decided to separate navigation
and interaction policy treatment. This seems also convenient
in order to provide a “legible” robot behaviour (not all robot
actions need to be displayed). Table I, shows an example of
the policies unrolling.

Another key advantage of this separation is to build reusable
policies. For instance, in the current system, the navigation
policy can be used alone, when the robot has to perform a
navigation task without interaction (when it is heading to its
re-charging station) or in conjunction with a different human
interaction policy.

C. Executing tasks taking humans into account

In a second step, we have extended the state space of the
interaction policy. Indeed, there are a number of observation
functions that are dedicated to the human-robot interaction
(detection, tracking of human faces, detection of humans
blocking the path. . . ).

In order to take these observations into account, two state
variables have been added to the interaction state space:

• path state in front of the robot : free,
blocking, blocked, freeing,

• face detection state : I see you, I don’t see you,
I see you again.

Notice that it explains in fact in which direction the things
go: better or worse because it is the interesting information
for the robot (and for the visitor to whom this will be shown).

Currently, we just use this information to give feedback to
people with messages: are you there ?, here you are !, we are
blocked, we can pass again. . .

In the future, they will be used to select actions that will
influence the task execution itself (slowing down, suspending
or even aborting execution, etc). This imposes to build task
execution policies that are able to react to such inputs.

This kind of information will also be useful to choose the
best media or the best conjunction of them to be used to convey
messages to the humans.

V. RESULTS AND ANALYSIS

A. Quantitative results

Between march and october 2004, Rackam has spent eight
weeks at the ”Cit́e de l’Espace” in four venues6.

During the last two stays, the robot was completly entrusts
to the organizers of Cité de l’Espace. During each experiment
many figures and data are automatically logged for analysis
purpose: all the requests to the modules and their reply, the
covered distance, the visitors interactions, etc.

The results presented bellow are a synthesis of the data
collected during the period from october 5th to october 17th.
During this stay Rackham was put on mission by the organiz-
ers for a total of nearly 33 hours. The robot is then permanently
in interaction and was requested for 902 visits to a place of
interest. For 732 of them, the robot was able to reach the
target zone. 168 were voluntarly interrupted by the visitors.
24 low levels errors detected by the supervisor that required
the intervention of the organizer (eg, a critical data, like laser
measurements, not updated in time).

The total covered distance is about 10km (the environment
is about 25x10 square meters). The average speed seems slow
but it integrates all the disturbances and jammings during the
motion.� �

MISSIONS = 902
SUCCESS = 732 ANNULATION = 168
TMP-STOP = 137 FAILURES = 24
REQUESTS = 30022 (av. 33 / mission)
DISTANCE total = 9439 m

mission = 9109 m
planned = 9952 m

DURATION total = 32h 56mn 30sec
on motion = 5h 4mn 42sec

SPEED on motion mission = 0.16 m/s
 	
B. Visitor behaviours

1) Human robot interaction:It is striking to notice how the
behavior of the visitors highly depends on their age.

Kids immediately identified Rackham as a robot (although
it is very different from cartoons ones). They are not afraid at
all and even often too effusive, catching the camera when it
does not look at them or pushing the robot when it does not
move fast enough.

Teenagers and young adults try to find out how it works
or how to make the system fail, blocking its path or clicking
on all the buttons. They are also very attracted by their own
image displayed by the face tracker.

While adults are anxious to understand every thing (techno-
logical exhibitions serve to transmit knowledge), the elderly
sometimes do not even imagine that this thing can move or
that they can communicate through the (tactile) screen.

2) Interface misunderstanding:Among the various data
displayed on the interface, we have implemented a “radar-
like” representation of the local map and of the proximity
data, in order to show how the robot models the dynamic

6see http://www.laas.fr/ sara/laasko.



Fig. 6. Head of Rackham emerging from a sea of kids.

obstacles (visitors), and static ones (from the map). Many
visitors, looking at the robot, take that element for a joystick
to make the robot move and stay disappointed on the robot
inactivity.

3) How does it works ?:There is a difference between
what people think the robot can do and what it really does.
Generally, people do not understand that the robot is deaf,
especially because it has an animated face that can speak.

Besides, they do not apprehend how the robot localizes itself
or detects obstacles. They generally think that the robot uses
the ultra-sonic sensors that they see (but that we do not use)
or its cameras. They do not understand why the robot does
not stop when they put their hands on them.

That brings out the difficulty for a robot to show the right
code to be understand. People will gradually understand better
how a robot works, but we have to take care to let the robot
be “readable”.

C. Towards control and dataflow for interactivity

Rackham, with its currently functionality and limitation has
been an attractive tour guide for many visitors. However, by
observing the way people interact with it and by analysing the
cases where it failed to accomplish its mission (either because
of a software failure, or because the humans did not understand
or follow what the robot was expecting from them – following
it, or freeing the way when necessary), we are able to draw
some conclusion and define future work.

1) Functional data relevance:A module often carries out
complex computations and manipulates a large amount of
data to accomplish the required functionalities. However the
output result is generally simplified to be easily used and
and interpreted. For example we would naturally expect a
face detection module to return a flag indicating if there is
somebody or not. . . and that’s what it does. But this binary
information is a strong impoverishment of the result. Indeed
in real systems results are rarely certain and most probably
the algorithm has an idea of the confidence on its result. This
confidence is a primordial information for a correct control.

The problem is : can we measure and to express such an
uncertainty in a coherent, standardized and comprehensible
manner for all the data produced by the modules ?

Beyond that resulting confidence, other data, hidden within
the modules, can be pertinent for the system control. For
instance a module that localizes the robot using proximetrics
data has an idea of the kind of environment encountered (eg,
corridor, cluttered, etc.)

2) Interface limitations:Nor the supervisor nor the inter-
face have access precisely to the other’s state. That brings
limitations and complications.

First of all, it is difficult for the supervisor to treat messages
given back by the interface.

More annoying for the interaction ability, interface is loaded
at the beginning and although information display on it change
along the time, it is not possible to put forward particular infor-
mation when it’s necessary (or hide when it is not), to display
elements bigger or not whether their current importance. For
example, when the visitor have to choose his destination, the
important things his the map and the possible destinations, not
the face detection that distract him.

In fact, we missed the possibility to control directly what is
displayed on the interface at a supervisor level.

We have now enhanced and redesigned this part of the
system to allow better communication between the supervisor
and the interface and better control from the supervisor on the
interface.

VI. CONCLUSION AND FUTURE WORKS

In this paper we have proposed an instance of the LAAS
architecture that is adapted to human/robot interaction. We’ve
built a supervisor which represents explicitely the interaction
tasks in addition to traditional navigation tasks and is able to
explain its behaviour and to interact with the people present in
the vicinity of the robot during its mission. We have combined
this supervisor with a functional level (implementing localiza-
tion, motion control with collision avoidance and interaction
with users) that provide enough flexibility and redundancy to
achieve a certain level of robustness in an relatively hostile
environment.

Rackham has now solid foundations which allows it to nav-
igate in a robust manner and to establish a simple interaction
with people in a real world environment. It has been effectively
used quite intensively and is considered as an attractive and
succesful component of the overall exhibition.

But this is only the first page of the story.
We now work to enhance Rackham’s interaction and per-

ception capabilities.
The integration of such capabilities will be done with the

concern of developing a systematic manner to integrate more
sophisticated context interpretation and to provide decision-
making to synthesize and control interactive tasks at various
levels.

ACKNOWLEDGMENTS

The work described in this paper was conducted within the
EU Integrated Project COGNIRON (”The Cognitive Compan-



ion”) and was funded by the European Commission Division
FP6-IST Future and Emerging Technologies under Contract
FP6-002020 and by the French National Program ROBEA.
Numerous persons have contributed to the project : the au-
thors want to thanks: Aymeric Yvernes, Coline Lelong-Pantel,
Florent Lanterna, Stéphane Plais, Guillaume Infantes, Maxime
Cottret, Abdelatif Baba, Paulo Menezes, Ludovic Brethes,
Frederic Lerasle; from the Space City Museum : Jean-Noël
Plachez, V́eronique Hallard, Maxime Randisi and Stephan
Lauriol; and from ICP Grenoble : Fréd́eric Elisei.

REFERENCES

[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, F. Ingrand, “An architecture
for autonomy”,International Journal of Robotic Research, Vol.17, N◦4,
pp.315-337, Avril 1998.

[2] G. Bailly, M. Bérar, F. Elisei, and M. Odisio, “Audiovisual speech
synthesis”, International Journal of Speech Technology, 6:331-346,
2003.

[3] L. Brèthes, P. Menezes, F. Lerasle, and J. Hayet, “Face tracking and
hand gesture recognition for human robot interaction,”International
Conference on Robotics and Automation, New Orleans, May 27 - June
1 2004.

[4] W. Burgard and A.B. Cremers and D. Fox and D. Häehnel and G.
Lakemeyer and D. Shulz and W. Steiner and S. Thrun, “Experiences
with an interactive museum tour-guide robot”,Artificial Intelligence ,
114 (1999) 3-55.

[5] S.Fleury, M.Herrb, R.Chatila, “GenoM: a Tool for the Specification
and the Implementation of Operating Modules in a Distributed Robot
Architecture”,IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Grenoble, France, 1997.

[6] T. Fong, I. Nourbakhsh, K. Dautenhahn, “A survey of socially interactive
robots,” Robotics and Autonomous Systems, Special issue on Socially
Interactive Robots, 42(3-4), 2003.

[7] B. Graf, M. Hans, and R. D. Schraft. “Care-O-bot II - Development of a
next generation robotic home assistant”,Autonomous Robots, 16(2):193-
205, 2004.

[8] H. Huttenrauch and K. Severinson Eklundh. “Fetch-and-carry with
CERO: Observations from a long-term user study with a service
robot”,In Proc. IEEE Int. Workshop on Robot-Human Interactive Com-
munication (ROMAN), pages 158-163. IEEE Press, 2002.

[9] B. J. A. Krose, J. M. Porta, A. J. N. van Breemen, K. Crucq, M.
Nuttin, and E. Demeester. “Lino, the user-interface robot”,In European
Symposium on Ambient Intelligence (EUSAI), pages 264̃n274, 2003.

[10] J. Minguez, L. Montano. “Nearness Diagram Navigation (ND): Collision
Avoidance in Troublesome Scenarios”,IEEE Transactions on Robotics
and Automation, p 154, 2004.

[11] Illah Nourbakhsh, Judith Bobenage, Sebastien Grange, Ron Lutz, Roland
Meyer and Alvaro Soto, “An Affective Mobile Educator with a Full-time
Job,” Artificial Intelligence, vol. 114,num. 1-2, pp. 95–124, 1999.

[12] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun, “To-
wards Robotic Assistants in Nursing Homes: Challenges and Results.,”
Robotics and Autonomous Systems, 42(3-4), 2003.

[13] J. Pineau and S. Thrun. “An integrated approach to hierarchy and ab-
straction for POMDPs,”Technical Report CMU-RI-TR-02-21, Carnegie
Mellon University, 2002.

[14] S. Russell and P. Norvig,Artificial Intelligence : A Modern Approach,
Prentice Hall, 2003.

[15] Siegwart, R. and et al. (2003) “Robox at Expo.02: A Large Scale
Installation of Personal Robots.”Special issue on Socially Interactive
Robots, Robotics and Autonomous Systems, 42 (2003) 203-222.

[16] Georgios Theocharous, Kevin Murphy, Leslie Kaelbling, ‘’Representing
hierarchical POMDPs as DBNs for multi-scale robot localization,”
ICRA’04 (Intl. Conf. on Robotics and Automation), New Orleans, LA,
USA, 2004.

[17] S. Thrun and M. Beetz and M. Bennewitz and W. Burgard and A.B.
Cremers and F. Dellaert and D. Fox and D. Haehnel and C. Rosenberg
and N. Roy and J. Schulte and D. Schulz “Probabilistic Algorithms
and the Interactive Museum Tour-Guide Robot Minerva”,Journal of
Robotics Research, vol. 19, num. 11, 2000.

[18] Turkett, Jr., W. and Rose, J. , “Planning With Agents: An Efficient Ap-
proach Using Hierarchical Dynamic Decision Networks,”Proceedings
of the Fourth International Workshop on Engineering Societies in the
Agent World, London, England, 2003.

[19] B. Wrede, A. Haasch, N. Hofemann, S. Hohenner, S. Hüwel, M.
Kleinehagenbrock, S. Lang, S. Li, I. Toptsis, G. A. Fink, J. Fritsch, and
G. Sagerer. “Research issues for designing robot companions: BIRON
as a case study”,In P. Drews, editor, Proc. IEEE Conf. on Mechatronics
and Robotics, volume 4, pages 1491-1496, Aachen, Germany, September
2004. Eysoldt-Verlag, Aachen.



A CORBA-Based Distributed Software
Architecture for Control of Service Robots

Steffen Knoop, Stefan Vacek, Raoul Zöllner, Christian Au, R̈udiger Dillmann
Institute for Computer Design and Fault Tolerance (IRF)

Universiẗat Karlsruhe (TH)
Germany

Email: {knoop,vacek,zoellner,au,dillmann}@ira.uka.de

Abstract— This paper presents the distributed robot control
software architecture developed for the autonomous service
robot Albert2. The development of this architecture is focused
on two major issues: Modularity and the integration of
learning aspects. Each module within the architecture is
presented, as well as the underlying event-based communi-
cation framework. An approach for integration of learning
capabilities is proposed.

I. I NTRODUCTION

The architecture of a robotic system strongly influences
the functionality and usability of such a system. In the last
decades, many architectures have been presented which re-
flect the different requirements a robotic system has to cope
with. Many requirements have to be considered during the
design of a robot architecture, e.g. reactivity, which means
the ability to react spontaneously to unexpected events,
or the need for an adequate type of control flow. Other
requirements are robustness, programmability, extensibility
and adaptability amongst many more.

Extensibility and adaptability become very important if
the robot has to act in a dynamic and partially unknown
environment. This applies only in a very limited way
to industrial robots, in contrast service robots are faced
permanently with unknown or partially known situations.
Due to the fact that service robots are not restricted to a
well-defined working area but work together with humans
in a human-centered environment, they must be prepared
to cope with unknown, i.e. new, situations as well as to
acquire and integrate new knowledge.

Extensibility can be reached through learning of task
knowledge. Learning can be done offline or online, re-
spectively, and it is desirable to have the possibility to
add newly acquired knowledge to the robot’s existent
knowledge. Adaptability is the robot’s ability to adjust
itself to dynamic or even new environments. Furthermore it
should be able to use its task knowledge if applicable even
if the knowledge was learned in a different environment.

In this paper we concentrate on integrating into the archi-
tecture the robot’s ability to learn task knowledge. On the
one hand, this knowledge will be acquired offline through
single user demonstrations, and on the other hand, the
system should be able to adapt and to extend its knowledge
at runtime. It is clear that these abilities have to be taken
into account while designing a robot’s architecture.

Section II gives a short overview of existing approaches,
section III introduces our robot system Albert2, and sec-
tion IV explains the learning approach ”Programming by
Demonstration”. The proposed software architecture is pre-
sented in section V. First results are shown in section VI.

II. STATE OF THE ART

As has been stated by many research groups, e.g. [1],
architectures form the fundament of robotic systems. Ty-
pically the existing approaches can be divided mainly into
three different classes:

Hierarchical architectures are based on a top-down
approach. Communication and controlflow is only done
vertically between the different layers. Higher levels de-
legate subgoals to lower levels to achieve superordinate
goals. An advantage of this approach is that planning is
straightforward because there is a superior view on the
system. A drawback of these systems is their insufficient
reactivity to dynamical environments. Examples for hier-
archical systems can be found in [2] and [3].

Behavioralsystems (e.g. [4], see [5] for an exhaustive
discussion) consist of several modules each representing
a specific behavior. These behaviors are not grouped in a
hierarchical manner but are running concurrently. These sy-
stems are robust because they don’t rely on the existence of
specific functional units compared to hierarchical systems.
Because of their modular style single behaviors can easily
be added. The lack of a high-level control unit complicates
the planning to achieve certain goals. Moreover safety
considerations are not easy to integrate.

Hybrid architectures try to combine the well defined
control flow of hierarchical systems with the advantages
of behavior based systems which are highly reactive.
These approaches have become very famous recently and
there exists a vast number of architectures with different
foci (e.g. [6], [7], [8]) and [9].

Another aspect which must be considered during the
design of a robot architecture is the learning ability of the
system. Zhang and Knoll [3] use a hierarchical approach
to learn operation sequences of two arm manipulations.
Bonasso et al. (cf. [10], [11]) use an architecture organized
into three layers: skills, sequencing and planning. Learning
is possible in each layer and through different layers. Other



research work concentrates on learning a specific behavior
[12] or mappings of sensor data [13].

III. SERVICE ROBOT ALBERT2

The architecture which is presented in this paper has
been realized on the service robot Albert2. Up to now it is
mainly used in a kitchen environment and the focus of task
learning and execution is laid on household environments.

Figure 1 shows the service robot Albert2 used for
experiments in a household environment. For manipulation,
it is equipped with 7 DoF arm and a three finger hand.
A mobile platform serves for navigation. Built in sensors
are a laser range sensor, a color stereo camera mounted
on a pan tilt unit, and a force torque sensor mounted
on the arm. For user interaction, the speech recognition
system Janus [14] is used in combination with an external
microphone, and loudspeakers on the robot provide speech
output. Additionally, a touchscreen is attached to the front
of the robot’s upper body. It is used for displaying the
robot’s current internal state (e.g. waiting, working, idle)
and for user interaction e.g by prompting questions on how
to proceed (e.g. showing images of all graspable objects)
to the user.

Fig. 1. Service robot Albert2

IV. PROGRAMMING BY DEMONSTRATION

In this section we shortly describe our approach for
teaching a robot new task knowledge and how this know-
ledge is represented. A complete description of the learning
mechanisms can be found e.g. in [15]. The approach is
called Programming by Demonstrationsince the task is
simply demonstrated by a human user in order to offer an
easy to use interface for the unexperienced user. The focus
lies on teaching higher level tasks since we assume that
basic skills like specific grasps or basic motor control for
movements of the arm already exist on the robotic system.
We rely on one-shot-learning because users should not be
forced to demonstrate the same task multiple times. The
approach is basically composed of the following phases:

• Demonstration of the task
• Perception, data preprocessing and fusion
• Segmentation of the acquired data

• Generalization of the segmented data
• Simulation of the learned task and refinement of the

task knowledge through user interaction
• Transfer of the newly acquired task knowledge onto

the robotic system

Abstract Task Knowledge (system invariant)

Representation

Sensor Dependent
Knowledge (implicit)

Cognitive Reasoning
(explicit)

Perception

Actuator Dependent
Knowledge (implicit)

Instruction Synthesis
(explicit)

Execution

Le
ar

ni
ng

A
daption

Fig. 2. Transfer of task knowledge of a human demonstration to a robotic
target system.

The teaching starts with the user’s demonstration in a
specially designed training center where the performed task
is perceived through different sensors like camera systems
and data gloves. This center is neccessary because todays
robot’s sensors do not provide enough information with
sufficiant precision. During the demonstration sensor data
is merged with respect to the different sensor models. In the
next stage the data is segmented depending on recognized
grasps and movements. After that the data is analyzed
and elementary operators which correspond to basic skills
of the robot are identified. For generalization these basic
operators are grouped hierarchically into so called macro-
operators.

Finally the knowledge has to be transferred to the robotic
system. Therefore we need a representation of the task
knowledge for the robot which needs to be reflected by
the architecture. Additionally a mapping of the macro-
operators to the robot’s task knowledge representations
needs to be defined. The robot’s representation must be
extendable to be able to add new task knowledge and be
adaptable in a way such that the existing knowledge could
be refined either through reinforcement by the robot itself
or by user interaction.

Figure 2 shows the learning process from user demon-
stration to generalized macro-operators on the left and
the transfer of the task knowledge to the robot system
on the right side. In thePerceptionand Executionphases



the type of background knowlegde which is used for data
processing is indicated, e.g. the implicit sensor models used
during the perception of the user demonstration, which
enables data fusion of different sensor sources. In contrary,
macro-operators are abstract and thus do not rely on this
background knowledge.

V. SOFTWARE ARCHITECTURE

A software architecture that is able to control a mobile
robot basically has to cover three aspects to comprise all
capabilities of the system: Control of the hardware, repre-
sentation of the environment and integration of knowledge
about skill and task execution. Including the demand for
a lifelong learning system, these requirements have to be
fulfilled in a way that the system remains extensible.

An expedient approach to design such an architecture is
therefore to identify the functional components as hard-
ware abstraction, environment model and skill and task
execution. Our proposed software architecture consists
consequently of the following components (see figure 3):

The hardware agentsencapsulate all hardware specific
functions. There is a hardware agent for each hardware
in the robot system, e.g. one for the robot arm, one for
the hand and one for the voice. Skill and task knowledge
is represented by theflexible programs. Example skills are
”drive to position” and ”open door”, tasks can be ”transport
an object” or ”put object on the table”. All information
about the environment is stored in anenvironment model.
This can hold all kinds of data: Coordinates, objects,
relations, features, images or sounds.

Evidently, there needs to be a way of communication for
these components. The proposed communication bus seen
in figure 3 allows communication between all components,
but nevertheless standardizes and restricts data exchange to
a defined set of data structures. It is event-based and is able
to incorporate internal as well as external (user triggered)
events.

This approach is very much inspired by the way an
operating system works. The components are in detail:

• The communication infrastructure consists of a
notification distribution instance, where clients can
subscribe for certain notification types. Notifications
may be delivered by internal or external sources.

• Hardware agents(resources) represent real or virtual
sensors and/or actuators. There is an agent forlaser
scannerand for cameras, but there may be also an
agent fordetection of humanswhich incorporates laser
scanner and vision information. Hardware agents are
also referred to asresources.

• The agent manageradministrates all hardware agents
and provides the resource management. Each notifi-
cation that is passed to an agent is filtered by the
agent manager. Thus, unauthorized commands (from
instances which have not locked the called resource)
to agents can be intercepted.

• Flexible programs contain the skill and task know-
ledge. These flexible programs (FPs) are the core
of the proposed robot control architecture. Learning,

within our context, means creation, extension and
adaption of flexible programs.

• The flexible program manageradministrates the fle-
xible programs. All notifications addressed to flexible
programs are filtered and delivered by the flexible
program manager. It also holds a list of all currently
existing FPs, including their type.

• Domain controlling and supervision as well as
FP instantiation and priority control is done by the
flexible program supervisor. Depending on the current
context, FPs are created, prioritized or deleted. In later
development, learning capabilities will be extended to
this component.

• The environment modelholds environmental data as
well as the robot’s internal state. It is implemented as
a blackboard. An intelligent xml data base, which is
being developed at our research group, will soon be
integrated and used for storage of task, skill and object
feature knowledge.

The implementation of the proposed software architec-
ture (see figure 3) consists of a set of CORBA object types,
which communicate via a communication instance using a
publish-subscribe mechanism (see also [16]).

Each public object’s interface is described in CORBA’s
Interface Definition Language, which enables the use of
different programming languages within the same frame-
work. We use C++ and have base classes implemented for
each object type, which encapsulate all communicational
and infrastructural aspects. This simplifies usage and im-
plementation of new elements, as users do not have to know
any details about communication and functionality of other
objects.

Instantiating each component as a separate CORBA
object allows object distribution over several computers and
different operating systems. It also decouples operation of
caller and callee, which is essential in complex systems. By
running different system parts on different machines, it is
on the one hand possible to split up required computation
power, and on the other hand it enables different users to
use the same infrastructure.

As most of the communicated information is very high-
level symbolic information, real-time constraints are not
defined primarily by data transmission, but by hardware
restrictions; nevertheless, the use of distributed objects
holds the risk of data loss or speed reduction.

Some of these architecture components will now be
described in detail.

A. Communication layer

The basis for every distributed architecture is formed by
the communication layer. The proposed architecture uses
a special message format (referred to asnotifications) as a
basic information container for communication.

Notificationsare small data blocks, wherein most of the
information is coded as plain text. This is important for
debugging and readability.

Notifications are always of one of three types:



Communication
Manager

Flexible Program
Manager

Agent Manager
Resource Management

Flexible
Program 1

Flexible
Program 2

Flexible
Program n

Agent 1

Agent 2

Agent n

Environment Model

Notification Flow

Asynchronous 
external events

FP Creation

Domain Switching

Priority Switching

Fig. 3. CORBA-based software architecture with flexible programs, hardware agents and communication bus

• Events are always delivered to flexible programs.
Events are generated either from hardware agents or
from external sources like speech or gesture recogni-
tion. Events are data directed from sensors/actors to
the control level.

• Actions are delivered to hardware agents. They are
mostly generated by flexible programs. Actions cor-
respond to data flow from the symbolic control level
to the sensor/actor level.

• Requestsare demands to the resource management
and therefore delivered to the agent manager. Requests
can be to lock, free, or try-lock resources.

TABLE I

NOTIFICATION DEFINITION

Header
Type Event, Action, Request
Time Time and date of creation
Sender Unique ID of sender instance
Receiver(s) Unique IDs of receiver(s)
Body
Name Notification specification
key value list Optional contents

A complete notification consists of a header and a body
(see table I), the notification body again holds a name and
a set of key value pairs. These have to be set by the sender
and transmit the information. As every slot within a noti-
fication is defined in plain text, debugging and readability
are simplified using a viewer and tools for manual creation
and sending of notifications. Each notification name and the
associated key value pairs have to be defined in advance.
Thus, all inter-object communication is standardized and
can be checked for consistency and conformity with the
specification.

To control the data flow of notifications and to avoid
storage of unattended messages, the timestamp in the
notification header controls notification deletion from the
delivery queues.

Notification distribution is performed by the commu-
nication manager using a publish-subscribe mechanism.
Undelivered messages are not stored within the commu-
nication manager, but discarded directly. In contrast, the
agent and flexible program manager possess a notification
queue, wherein messages are stored until they are either
delivered or expired.

B. Resource management

Real and virtual hardware agents are also referred to as
resources. These resources have to be locked and unlocked
before usage from any flexible program to avoid collisions.
This resource management is done by the agent manager,
which also administrates the hardware agents. Agent ad-
ministration comprises keeping track of the agent’s state
(running, sleeping, stopped), of current locks, of safety
aspects (stop/resume all agents in case of emergency stop)
and also notification surveillance and distribution among
hardware agents.

Agents can only be locked by one flexible program at a
time, but these usage authorizations can be inherited.

C. Hardware agents

Each hardware agent is identified by a unique ID and a
unique agent type. Depending on the agent type, an agent
can accept different notifications: A vision agent is able
e.g. to search objects, while an robot arm agent can move
or switch move mode.

The capabilities of an agent are context independent and
defined by the capabilities of the underlying (real or virtual)



hardware. The hardware agent for the mobile platform e.g.
accepts actions for geometric and topological navigation:
Rotate relative/absolute, drive relative/absolute, set posi-
tion, stop drivingas well asdrive to node X.

D. Interruption and exception handling

There are two cases, where running operations have to
be canceled immediately:

• The goal has changed while an operation was running.
This goal change can be caused by a human or by
other external events. The goal change has to be
carried out as ”smooth” as possible.

• An emergency situation occurs. This can either be an
internal one (like collision detection, or some other
conflict) or invoked by the user (e.g. saying ”stop”
or pushing a soft stop button). It is very important
that these exceptions trigger a stop of all hardware
components immediately and that the system remains
passive until an explicit resume command occurs.

While the latter is realized through direct stop calls
(which are not handled by the standard communication and
queuing software), to achieve the former, a continuous goal
adjustment has to be performed within the hardware agents.

E. Flexible programs

Flexible programs always have the following properties:

• A unique ID, used to identify the FP within the whole
system.

• A state (inactive/active, when active: FSM-like state
description).

• A list of notifications that are accepted at the current
state.

• A priority which can be used for the decision which
FP gets a notification that is accepted by more than
one FP.

• A list of currently owned resources.

These properties are used, set or read by the flexible
program manager and the domain controller and are needed
for communication.

Flexible programs encode the task knowledge. They
generate agent commands from background knowledge,
environmental data, and robot internal states. FPs also have
to handle errors.

The flexible program description is independent from the
robot’s kinematics, as all hardware specific algorithms are
encapsulated in the hardware agent objects. Of course, to
keep two robots exchangeable, they must possess similar
hardware components.

F. Flexible program specification

Within our concept, the flexible programs hold the task
knowledge that is included in the system. This knowledge
is represented as the number, type, parameterization and
order of the basic skills used. We propose to use a meta
programming language. This task description language has
to fulfill several requirements:

• It has to be powerful enough to describe all possible
action sequences as well as dependencies, decisions
and exceptions.

• On the other hand, this language should make as
many restrictions as possible to ensure ease of use and
debugging capabilities as well as to avoid ambiguities.

• It should be easily convertible to a standard data des-
cription format like xml. This enables use of standard
tools for saving, searching, comparing and merging
different flexible programs.

• To guarantee extendibility at runtime, the language
must not need a compilation process. A program
should be directly executable.

There are languages that fulfill some of these requirements
(e.g.ESL, see [17], orTDL, see [18]), but in particular the
program extendibility has not been an explicit demand.

G. Task knowledge representation

A flexible program holds task knowledge, which is
encoded in its specific structure and parameters. The
implementation of an FP which provides the interface
and functionality described in section V-E is proposed as
follows:

A flexible program is composed of functional blocks.
These functional blocks define functionality, pre- and post-
conditions in the same way FPs do; in fact, often FPs are
used as functional blocks within other FPs.

One functional block consists of an input parameter list
(coordinates, object names, persons, area of interest, etc),
different result states (several success and failure states)
and their output parameters (positions, objects, persons,
etc), and the immanent functionality. This can consist of
one or more calls to hardware agents or other flexible
programs, including requests to the environment model to
get or set required or perceived data and results. Such a
functional block comprises manipulation and/or perception,
the environment (including the robot itself) is always in
the loop. It also contains information about interruptibility.
If the current block is interruptible, there are additional
suspend and resume methods.

Inside a flexible program, these blocks are then wired
according to the task specification and depending on the
respective results. As this sequence is a high level action
chain, it is very easy to understand and debug.

It is important to note that there must not exist con-
current, asynchronous processes within one FP. This as-
sumption has to be made to avoid collisions in resource
management. This case has to be solved with different
flexible programs.

H. Generation and extension of flexible programs

As flexible programs are defined on a high abstraction
level using functional blocks, generation and extension is
possible offline and online. Basically, there are three ways
to integrate new knowledge into the system:

1) Manual FP definition: Flexible programs can be
defined by a programmer. This can be done either using a
GUI to build and connect functional blocks or by coding
by hand.



2) FP derivation from user demonstrations:Flexible
programs can be generated from macro operators (see
section IV). Macro operators are set up by observation of
a human demonstrating a task. This observation can either
be done offline using extra hardware and software or online
by the robot itself. Currently, a special demonstration
environment is used with special sensors and software.

This transformation process will presumably be carried
out semiautomatic; the operator will still need to correct
and modify robot programs that are generated automatical-
ly.

3) FP extension by user interaction at runtime:Robot
programs that are not complete, i.e. not every possible
outcome situation is covered by the FP, can be extended
at runtime. If such a situation occurs, the system can ask
the user for a solution. Then, an empty functional block
is constructed and filled by joining information given by
the user with background and context knowledge. If this
extension leads to a satisfying result, the FP is saved and
used at the next time.

If e.g. the robot fails to move to the next room because
the door is closed (and closed doors are not modeled as
obstacles yet), the user can tell it to open the door and try
again. This knowledge is then saved and reused whenever
this situation occurs.

VI. RESULTS

The architecture has been successfully implemented and
tested on the service robot ”Albert2”. The robot is able
to execute tasks like fetch-and-carry or pick-and-place
operations successfully.

The required skills and time needed for implementation
of additional functionality was drastically reduced, becau-
se the chosen architecture and knowledge representation
supported the programmer by encapsulating most low level
and infrastructural issues related to communication, timing,
resource management, etc.

VII. C ONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach for a service
robot architecture. The way task knowledge is represented
within the architecture allows for permanent extension of
the knowledge base. Knowledge is perceived through user
demonstrations, and can be extended at runtime by the
robot itself or by user interaction. Taking these options into
account, a suitable task knowledge representation has been
proposed, where task knowledge is described byflexible
programs.

The proposed learning capabilities will now be imple-
mented and integrated in the presented framework. The
architecture will be extended by a task planner, which will
be incorporated into the learning process.

ACKNOWLEDGMENT

This work has been partially supported by the german
collaborative research center “SFB Humanoid Robots”
granted by Deutsche Forschungsgemeinschaft (seehttp:

//www.sfb588.uni-karlsruhe.de ) and by the Eu-
ropean Union via the Integrated project “COGNIRON
(Cognitive Robot Companion)” funded under the Sixth
Framework Programme (seehttp://www.cogniron.
org ).

REFERENCES

[1] Ève Coste-Manìere and R. Simmons, “Architecture, the backbone
of robotic systems,” inProc. 2000 IEEE International Conference
on Robotics and Automation, San Francisco, CA, April 2000.

[2] J. Albus, R. Lumia, and H. McCain, “Hierarchical control of intel-
ligent machines applied to space station telerobots,” inTransactions
on Aerospace and Electronic Systems, vol. 24, September 1988, pp.
535–541.

[3] A. K. J. Zhang, “Control architecture and experiment of a situated
robot system for interactive assembly,” inProc. 2002 IEEE Interna-
tional Conference on Robotics and Automation, Washington, D.C.,
May 2002.

[4] S. A. Blum, “From a corba-based software framework to a
component-based system architecture for controlling a mobile ro-
bot,” in International Conference of Computer Vision Systems (ICVS
2003), Graz, Austria, April 2003, pp. 333–344.

[5] R. C. Arkin, Bahvior-Based Robotics. Cambridge, Massachusetts:
The MIT Press, 1998.

[6] R. Alami, R. Chatila, S. Fleury, M. Herrb, F. Ingrand, M. Khatib,
B. Morisset, P. Moutarlier, and T. Siḿeon, “Around the lab in 40
days ...” inProc. 2000 IEEE International Conference on Robotics
and Automation, San Francisco, CA, April 2000.

[7] K. H. Low, W. K. Keow, and M. H. A. Jr., “A hybrid mobile robot
architecture with integrated planning and control,” inProc. of the
First International Joint Congerence on Autonomous Agents and
Multi-Agent Systems, Bologna, Italy, July 2002, pp. 219–226.

[8] M. N. Nicolescu and M. J. Mataric, “A hierarchical architecture
for behavior-based robots,” inProc. of the First International
Joint Congerence on Autonomous Agents and Multi-Agent Systems,
Bologna, Italy, July 15-19 2002.

[9] P. Elinas, J. Hoey, D. Lahey, J. D. Montgomery, D. Murray, S. Se,
and J. J. Little, “Waiting with jośe, a vision-based mobile robot,”
in Proc. 2002 IEEE International Conference on Robotics and
Automation, Washington, D.C., May 2002.

[10] R. P. Bonasso and D. Kortenkamp, “An intelligent agent architecture
in which to pursue robot learning.”

[11] R. P. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D. P. Miller,
and M. G. Slack, “Experiences with an architecture for intelligent,
reactive agents,”Journal of Experimental & Theoretical Artificial
Intelligence, vol. 9, no. 2/3, pp. 237–256, April 1997.

[12] W. Paquier and R. Chatilla, “An architecture for robot learning,”
in 7th International Conference on Intelligent Autonomous Systems,
Marina del Rey, California, USA, March 2002.

[13] M. Sahami, J. Lilly, and B. Rollins, “An autonomous mobile robot
architecture using belief networks and neural networks,” inworking
paper, Department of Computer Science, Standford University, 1995.

[14] H. Soltau, F. Metze, C. F̈ugen, and A. Waibel, “A one-pass decoder
based on polymorphic linguistic context assignment,” inIEEE
Workshop on Automatic Speech Recognition and Understanding
(ASRU ’01), Madonna di Campiglio, Italy, 2001.

[15] M. Ehrenmann, R. Z̈ollner, O. Rogalla, S. Vacek, and R. Dill-
mann, “Observation in programming by demonstration: Training
and execution environment,” inIEEE International Conference on
Humanoid Robots, Karlsruhe, Germany, Octobre 2003.

[16] R. Dillmann, “Interactive natural programming of robots: Introduc-
tory overview,” inDREH 2002. Tsukuba, Ibaraki, Japan: Tsukuba
Research Center, AIST, December 2002.

[17] R. P. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D. P. Miller,
and M. G. Slack, “Experiences with an architecture for intelligent,
reactive agents,” vol. 9, no. 2/3, Apr. 1997, pp. 237–256. [Online].
Available: citeseer.ist.psu.edu/bonasso97experiences.html

[18] R. Simmons and D. Apfelbaum, “A task description language
for robot control,” 1998. [Online]. Available: citeseer.ist.psu.edu/
simmons98task.html


