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Executive Summary

This report presents a summary of our results on tracking and identification of humans from a mobile
robot in everyday environments. The report starts with a short analysis of the sensor sources that can
be used for human tracking from a mobile robot. The report is continued with a summary our results
on fast and robust people tracking using vision and other sensor sources. This summary is based on a
number of published or submitted scientific reports. First, we present some results on detection and
tracking of people using only vision. We analyze and propose an improved motion segmentation algo-
rithm and a color feature tracking algorithm. The developed methods are analyzed and then combined
to design a fast and robust vision based people tracking algorithm for a mobile robot. Second, combi-
nation with sensors other then vision was considered. A multi-modal tracking algorithm is presented
where audio and laser sensors are combined with vision for robust tracking of humans. This algorithm
was implemented on a real robot and tested in real environments. Finally, the problem of labelling the
individuals that were tracked by the robot is addressed. A Bayesian framework was developed to as-
sociate the persons in its field of view with the people that were observed earlier. The framework was
tested for vision-based people identification using simple color features. The published or submitted
scientific reports that contain more details are attached to this document.

Role of (topic of deliverable) in Cogniron

Interaction with people is one of the essential capabilities of a cognitive robot assistant and therefore
the interaction is an important topic in this project. For the interaction with people it is crucial that
the robot is able to detect, track and label individuals it interacts with. This makes the topic of this
deliverable important for the project.

Relation to the Key Experiments

The results on tracking and identification of humans presented here are essential for the Key Experi-
ment 1: "THome Tour Scenario’. The robot should be able to detect and track people that interact with
the robot and lead the robot for a tour around the house. For the interaction it is also important to label
individuals it interacts with. For the Key Experiment 2: *Curious Robot’, it is important to detect and
track humans initially and for interacting with them. Detecting and tracking human is important as
well for the Key Experiment 3, ”Learning Skills and Tasks”, for learning from observations.



1 Human tracking and identification from a mobile robot

First, a short discussion about the sensor sources that can be used for human tracking from a mobile
robot is presented. Second, a short summary is given of the published or submitted reports that
describe our results about human tracking and identification. The actual reports are attached to this
document.

1.1 Sensor sources

One of the standard sensors used on mobile robots is a digital camera. A camera provides rich infor-
mation about the environment. Due to the aspects that will be considered later in the project, like face
identification and eye gaze tracking, it seems to be important to use a high resolution camera instead
of normal resolution one.

For robust people tracking it would be useful to have some additional 3D information. Laser scanner
is used on most mobile platforms for navigation and provides coarse 3D information in one plane.
The output from the laser scanner can be used to detect legs of people walking near the robot [3].
Denser 3D information can be obtained using vision. Stereo camera would be a simple solution [2].
There are also other sensors that provide more reliable dense 3D data. For example "time of flight’
(TOF) sensors. The decision to use a TOF 3D camera instead of stereo vision can be motivated by the
fact that the 3D camera is an active sensor. It transmits light and therefore is unaffected by different
lightning conditions. It also means, that the depth information is detected, regardless if there is a
structured surface or not. Stereo cameras need some structure to find corresponding points in both
pictures. Without structure there is no depth information. However the stereo cameras are much
cheaper and will be considered also.

The different types of 2D and 3D cameras are listed and compared in the attached internal report
[1]. The digital camera DFK 41F02 and TOF camera Swiss Ranger SR-1 where chosen by one of
the partners to be used on a robot platform. High quality data from these 2D and 3D sensors will be
available for other partners for some experiments during the project. Experiments will be performed
also using stereo cameras instead of the TOF camera [2].

1.2 Vision based people tracking

Vision is an important sensor source for a mobile robot. Efficient background/foreground segmenta-
tion is presented in [5]. This module is important since it can be used to detect the objects of interest
(people) in a simple, fast and robust way when the camera is static. It also gives a fine segmentation of
the objects from the scene which will be important for extracting the features that describe the object
that are used for later identification of the objects. It is interesting to see that biological studies also
support this claims: both humans and most of the animals do not have continuous but step-wise eye
movements even when they are moving their head continuously. They use their eye movements to
fixate their eyes to a certain point while moving their head in order to stabilize their view and to be
able to detect the moving objects better.

When robot is moving it is still possible to segment the moving object from the background. A simple
motion segmentation algorithm we used is described in [4]. We also developed an efficient tracking
algorithm using color features [6]. An overview of the advantages and disadvantages of the developed
algorithms is given in Table 1. This table is used to design a robust people tracking system that
combines these algorithms described in [4].



Table 1: Fast and robust vision detection/tracking modules

Background subtraction | Color tracking | Motion segmentation
Detecting objects- static camera yes no yes
Detecting objects- moving camera no no yes
Segmentation blob (still camera) coarse coarse

Detecting/tracking- moving camera no yes yes
Detecting/tracking- object static (short time) yes (still camera) yes no
Detecting/tracking- object static (long time) no yes no
Detecting/tracking- varying light conditions no no yes

1.3 Multi-modal people tracking

Vision is a rich information source but other sensors can be used to greatly improve the robustness of
the people tracking and identification algorithms in natural environments. A method is presented for
multi-modal person tracking which uses a pan-tilt camera for face recognition, two microphones for
sound source localization, and a laser range finder for leg detection. The method was implemented on
a real robot and tested in natural environments. The analysis of this system is given in [3].

1.4 People identification (labelling)

In order to track the encountered people, a robot must associate persons detected in its field of view
with the people that were observed earlier. The task is typically broken down into two subproblems:
1) local tracking, where the person remains in the field of view (discussed in the previous two sections)
and 2) global tracking (labelling), which is the association between local tracks. The global tracking
aims to find a correspondence between a local trajectory of some person with other (earlier) local
trajectories of the same person. The essential difference between the two tasks follows from the
assumption of persons smooth motion between frames, which provides important cues for frame-to-
frame tracking.

We present in [4] our global labelling (tracking) method. A generative model is presented in which
each person is identified with an unique label and each local trajectory is considered as a noisy ob-
servation from the hidden label. A Bayesian approach is used to determine the posterior density on
the labels given the observations. For online performance we developed an approximation algorithm
which falls into the class of deterministic assumed-density filtering approximations.

2 Future Work

The developed algorithms should be further refined. Combining vision with other sensor sources
seems to be very important for designing a robust system that works in natural environments. The
vision-based tracking from [4] should be further integrated into the multi-modal person tracking
framework [3]. Initial experiments were already performed. Other sensor sources could also be
considered (see section: ’Sensor sources’). Only some initial experiments were performed with the
"time of flight’ 2.5D range sensor.



This deliverable considers only whole body tracking of humans. Further work within RA2 includes
also tracking of human body parts and estimating their pose which is important for interaction with
humans. Combination different sensors will be even more important there.

References

[1] K.Pfeiffer. Overview of 2d cameras and 3d TOF sensors. IPA internal report, 2004.
[2] S.Vacek. Sensors at UniKarl. UKA internal report, 2004.

[3] B. Wrede, A. Haasch, N. Hofemann, S. Hohenner, S. Hiiwel, M. Kleinehagenbrock, S. Lang,
S. Li, L. Toptsis, G. A. Fink, J. Fritsch, and G. Sagerer. Research issues for designing robot
companions: BIRON as a case study. In P. Drews, editor, Proc. IEEE Conf. on Mechatronics
& Robotics, volume 4, pages 1491-1496, Aachen, Germany, September 2004. Eysoldt-Verlag,
Aachen.

[4] W.Zajdel, Z.Zivkovic and B.Krose. Keeping track of humans: Have I seen this person before? In
Proceedings of ICRA 2005, Barcelona, Spain, 2005.

[5] Z. Zivkovic. Improved adaptive Gausian mixture model for background subtraction. In Proceed-
ings Int’l Conference Pattern Recognition, 2004.

[6] Z. Zivkovic and B. Krose. An EM-like algorithm for color-histogram-based object tracking. In
Proceedings Conference on Computer Vision and Pattern Recognition, 2004.

Annexes

Attached scientific papers (see references). ..



2D cameras

Brand Vendor Resolution |Interface Framerate |Lightamplification

ZC-XY30 Computar 752)x/582 |[Ethernet 25bis 32x

ZC-Y30PH4 |Computar 752)x/582 BNC analog bis 32x

ZC-Y11PH4 |Computar 752)x/582 BNC analog keine

DFW-V500 |Sony 640[x/480 [Firewire 30k.A.

DFW-VL500 |Sony 640x480 |Firewire 30|k.A.

DFK 21F04  [The Imaging Source| 640x480 [Firewire 30|k.A.

DFK 31F03  [The Imaging Source | 1024[x[768 |Firewire 15|k.A.

DFK 41F02 [The Imaging Source| 1280x|960 |Firewire 7,5K.A.

DFW-X700 Sony 1024)x|[768 |Firewire 15|k.A.

DFW-SX900 [Sony 1280/x/960 |[Firewire 7,5k.A.

AXIS 2100 AXis 640x480 [Ethernet 10|k.A.

AXIS 2120 AXxis 704|x| 576|Ethernet 25|k.A.

Sensitivity [Lux] [Connector [Size [mm] (B x H x T) [Specials Prize [€]

Std. 3; RL 0,03  |CS-Gewinde | 71x| 68,5x 175Webserver; 1499

Std. 2,2; RL 0,03 |CS-Gewinde | 74)x| 65x 136,5 1075

Std. 1,2 CS-Gewinde | 60x| 46 95 475

Std. 6 bei F1.2  |C-Mount 60x| 61X 116,7 940

Std. 14 bei F1.8 |vorhanden 60x| 61X 118,512x Motor zoom 1064
Software and SDK delivered with

Std. 4 bei 1/30s  |C/CS-Mount | 50x| 50x 50camera 590
Software and SDK delivered with

Std. 13 bei 1/50s |C/CS-Mount | 65x| 65)x 65/camera 890
Software and SDK delivered with

Std. 19 bei 1/50s |C/CS-Mount | 65x| 65 65/camera 1490

Std. 20 C-Mount 50x| 50 110 1796

Std. 20 C-Mount 50x| 50 110 2596

35mm
k.A. vorhanden 41x| 102 147Webserver; 399
k.A. 3,5-8mm 125x| 48 155Webserver; 1130
Comparison color cameras
Resolution|interface |[Framerate [Size [mm] |Prize [€]

Desired value: |1280[x/960| Firewire 7,5  |60[x/60[x/100 1500

ZC-XY30 ¢ = ® % &

7C-Y30PH4 S $ = % &

ZC-Y11PH4 N $ = & &

DFW-V500 % & ® % &

DFW-VL500 S & ® % &

DFK 21F04 $ & & & &

DFK 31F03 $ o & & &

DFK 41F02 & & & & &

DFW-X700 N ® o & ®

DFW-SX900 & & & S $

AXIS 2100 ¢ = ® % &

AXIS 2120 ¢ = ® % &




3D TOF cameras

Depth
resolution
max. Framerate
Brand Vendor Resolution|[mm] Interface max. [fps]
PMD PMDTec GmbH| 16|x| 16 10|RS232 2
Swiss Ranger SR-1 |CSEM 124)x| 160 5/USB 2.0 30
Zmini 3DV Systems | 752|x| 582 5|needs PC for control 30
DMC100 3DV Systems | 768|x| 494 5|Firewire 60
Range
max.
[m] Optics Size [mm] (B x H x T) |Specials Prize
7,5/ 10° viewing angle| 90jx| 90|x 160 12.500,00 €
7,5/16mm fix 135[x| 45|x 32|Also detects intensity | 9.570,60 €
To big; Also detects
3,5|C-Mount 195|x|205|x 280RGB 28.383,35 €
3,545° 126(x| 83|x 160|needs lot of 11.210,80 €
computational power
(Dualsystem with
2.8GHz);
Resolution can be
devided by 2 and 4 -
Frame rate can be
reduced -
everything
configurable by
software; Range and
opening angle can be
customized; detects
intensity also
Comparison 3D-TOF cameras
Resolution |Depth resolution |[Frame rateRange Size [mm] (B x H x T)|Prize [€]
max.[mm] max. [fps] |max. [m]
Desired value: 160)x | 120 10 25 3 solx | 80x| 150 10000
PMD S 3 3 o 3 3
Swiss Ranger SR-1 & & & & & &
Zmini ® d o o 3 3
DMC100 %5 $ & S 3 3




UKA internal report

Sensors at UniKarl

UKA uses a colour stereo camera from videre design (http://www.videredesign.com). The
camera head is a mega-d camera consisting of two CMOS chips with a maximum resolution
of 1280x960 pixels. For the tracking on amobile robot a
resolution of 320x240 pixelsis used. The reduction of the
resolution is done by binning (averaging over a block of
pixels) and decimation (leaving out every second pixel and
every second line) of the whole image. The camera does
not possess an automatic gain control nor white-balancing.
Instead, the values for gain and exposure as for blue and
red channels can be adjusted manually viathe provided
software interface.

Aslenses, standard C-mount lenses are used. During the
studies two different lenses from rainbow (s.
http://www.rainbowcctv.com/) were used with focal
lengths of 4.8mm and 7.5mm, respectively. The angular
field of view is85.0° x 69.0° (4.8mm) and 60.8° x 47.5°
(7.5mm) respectively.

The picture on theright (fig. 1) shows the mega-d camera
mounted on a pan-tilt-unit (model PTU-D46-17) from directed
perception (s. http://www.dperception.com). The following
figure (fig. 2) shows an image captured at 320x240 with adjusted red and blue colour channel.

X e

Figure 1: mega-d camera

Figure 2: image at 320x240

The camerais shipped together with software for transferring images from the camera over
firewire (IEEE 1394) in the computer and for calculating depth images. For depth image



calculation the images are first rectified (that is, removal of lens distortion and alignment of
images), secondly, significant features are enhanced with a L aplacian-of-Gaussian-filter and
in the last step, the disparities are calculated by evauating the cross-correlation between the
left and the right image. The following figure 3 shows arectified image-pair and the resulting
disparity-map. The brighter a pixel the nearer the point isto the camera.

Thelast image pair (fig. 4) shows two different views of the 3d-reconstruction of the scene
with the calculated depth information.
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Figure 3: stereo images and resulting digparity

Figure 4: reconstructed scene from two different view points



Research Issues for Designing Robot Companions:
BIRON as a Case Study

B. Wrede, A. Haasch, N. Hofemann, S. Hohenner, S. Hiiwel,
M. Kleinehagenbrock, S. Lang, S. Li, I. Toptsis, G. A. Fink, J. Fritsch, and G. Sagerer*
*Bielefeld University, Faculty of Technology, 33594 Bielefeld, Germany
Email: bwrede @TechFak.Uni-Bielefeld. DE

Abstract— Current research in robotics is driven by the goal
to achieve a high user acceptance of service robots for private
households. This implies that robots have to increase their social
aptness in order to become a robot companion that is able to
interact in a natural way and to carry out tasks for the user.

In this paper we present the Bielefeld Robot Companion
(BIRON) as an example for the development of robot companions.
BIRON is a mobile robot that is equipped with an attention
system based on a multi-modal sensor system. It can carry out
natural speech based dialogs and performs basic functions such
as following and learning objects. We argue that the development
of robot companions has to be tightly coupled with evaluation
phases. We present user studies with BIRON which indicate
that the functionality of a robot does not receive as much
attention as the natural language interface. This indicates that
the communicative behavior of a robot companion is a critical
component of the system and needs to be improved before the
actual functionalities of the robot can be evaluated and re-
designed.

I. INTRODUCTION

One of the main current issues in developing interactive
autonomous robots is the design of social robots. This focus
is motivated by the insight that robots have to exhibit a basic
social behavior apart from their functional capabilities in order
to be accepted in the environment of a private household.
Dauthenhahn and Billard offer a definition of the term social
robots with respect to the capabilities they exhibit in the
interaction with their social environment [5]:

social robots are embodied agents that are part of a hetero-
geneous group: a society of robots or humans. They are able
to recognize each other and engage in social interactions, they
possess histories (perceive and interpret the world in terms of
their own experience), and they explicitly communicate with
and learn from each other.

In order to achieve these goals it is proposed in [6]
that a robot has to be able to show the following features
and capabilities: Embodiment, emotion, dialog, personality,
human-oriented perception, user model, social learning, and
intentionality.

Current robotic systems’ capabilities are far from showing
a human-like level in all these dimensions. However, different

IThis work has been supported by the European Union within the *Cog-
nitive Robot Companion’ (COGNIRON) project (FP6-IST-002020) and by
the German Research Foundation within the Collaborative Research Center
"Situated Artificial Communicators’ as well as the Graduate Programs *Task
Oriented Communication’ and ’Strategies and Optimization of Behavior’.

aspects have been realized with different degrees of complexity
mainly with respect to the features embodiment, human-
oriented perception, and dialog.

When comparing the different service robots with respect to
these features it becomes apparent that most of them share a
similar level of embodiment: the systems are generally based
on mobile platforms (e.g. Care-O-bot II [11], CERO [14],
HERMES [2], Jijo-2 [1], Lino [16], ROBITA [20]) but only
very few have actuators like arms and hands (e.g. Car-O-bot,
HERMEYS) that enable them to fetch and carry objects, which
would be one of the fundamental functionalities for a service
robot at home. Sensors on such systems generally encompass
visual and acoustic (speech) modalities (e.g. Care-O-bot II,
HERMES, lJijo-2, Lino, ROBITA, SIG [21]). Thus, despite
great differences in their physical appearance current service
robots exhibit a rather standardized level of embodiment.

As for human-oriented perception, most systems are able
to demonstrate attention-like behavior by visually tracking
persons and focusing on a speaking person. Some systems are
also able to identify different persons. It is generally observed
that this is a crucial basic behavior for robots to gain and keep
a person’s attention and motivation for interaction.

Less homogenous — and more difficult to compare — are
the dialog competences of such robots. It is generally agreed
upon that a natural language interface is necessary for easy
and intuitive instruction of the robot. However, current dialog
systems are often restricted to prototypical command sentences
and simple underlying finite state automata. Other modalities
than speech, e.g. gestures, are generally ignored.

Emotional perception and production, the development of a
personality, building a model of the communication partner,
as well as social learning and exhibiting intentionality are
features that have partly been demonstrated in so called
sociable robots (e.g. Kismet [3] or Leonardo [4]) but not on
fully autonomous robots that are supposed to fulfill service
tasks. However, even such sociable robots do generally not
possess sophisticated verbal communication capabilities.

In order to move towards the ambitious goal of a robot
companion, which should exhibit both social aptness and ser-
vice functionalities, it is necessary to perform the development
in a closely coupled design-evaluation cycle. In effect, long
term user studies such as, for example, performed with CERO
are necessary in order to understand the long term influence
of contextual variables such as ergonomic features or the



reactions of bypassing people. With our robot BIRON we
want to address this intersection of social capabilities and
functional behavior by enabling the system to carry out a more
sophisticated dialog for handling instructions and learning
new parts of its environment. One scenario that we envision
within the COGNIRON project! is a home-tour where a user
is supposed to show BIRON around his or her home. This
scenario requires BIRON to carry out a natural dialog in order
to understand commands e.g. for following and to learn new
objects and rooms.

We addressed the issue of evaluation by performing first
preliminary user studies in order to evaluate single system
components and to better understand in which direction we
have to guide the further development of our robot. As we will
show, a robot has to reach a certain level of verbal competence
before it will be accepted as a social communication partner
and before its functional capabilities will be perceived as
interesting and useful.

In this paper we will first present the overall system
architecture (Section II) and hardware (Section III) before
describing the modules in more detail in Sections IV to
VI. The current interaction capabilities are shortly described
in Section VII. We present results from our user studies
Section VIII.

II. SYSTEM OVERVIEW AND ARCHITECTURE

Since interaction with the user is the basic functionality of
a robot companion, the integration of interaction components
into the architecture is a crucial factor. We propose to use a
special control component, the so-called execution supervisor,
which is located centrally in the robot’s architecture [15].
The data flow between all modules is event-based and every
message is coded in XML. The modules interact through a
specialized communication framework [25]. The robot control
system (see Fig. 1) is based on a three-layer architecture [9]
which consists of three components: a reactive feedback
control mechanism, a reactive plan execution mechanism, and
a mechanism for performing deliberative computations.

The execution supervisor, the most important architecture
component, represents the reactive plan execution mechanism.
It controls the operations of the modules responsible for de-
liberative computations rather than vice versa. This is contrary
to most hybrid architectures where a deliberator continuously
generates plans and the reactive plan execution mechanism
just has to assure that a plan is executed until a new plan
is received. To continuously control the overall system the
execution supervisor performs only computations that take
a short time relative to the rate of environmental change
perceived by the reactive control mechanism.

While the execution supervisor is located in the intermediate
layer of the architecture, the dialog manager is part of the
deliberative layer. It is responsible for carrying out dialogs to
receive instructions given by a human interaction partner. The

ICOGNIRON is an integrated Project of a European consortium that is
supported by the European Union. For more details of this project see
http://www.cogniron.org.
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Fig. 1. Overview of the BIRON architecture (implemented modules are

drawn with solid lines, modules under development with dashed lines).

dialog manager is capable of managing interaction problems
and resolving ambiguities by consulting the user (see Sec-
tion VI). It receives input from speech processing which is
also located on the topmost layer (see Section V) and sends
valid instructions to the execution supervisor.

The person attention system represents the reactive feedback
control mechanism and is therefore located on the reactive
layer (see Section IV). However, the person attention system
does not directly control the robot’s hardware. This is done
by the Player/Stage software [10]. Player provides a clean
and simple interface to the robot’s sensors and actuators.
Even though we currently use this software to control the
hardware directly, the controller can easily be replaced by
a more complex component which may be based on, e.g.,
behaviors.

In addition to the person attention system we are currently
developing an object attention system for the reactive layer.
The execution supervisor can shift control of the robot from
the person attention system to the object attention system in
order to focus objects referred to by the user. The object
attention will be supported by a gesture detection module
which recognizes deictic gestures [13]. Combining spoken
instructions and a deictic gesture allows the object attention
system to control the robot and the camera in order to acquire
visual information of a referenced object. This information
will be sent to the scene model in the intermediate layer.

The scene model will store information about objects in-
troduced to the robot for later interactions. This information
includes attributes like position, size, and visual information
of objects provided by the object attention module. Additional
information given by the user is stored in the scene model as
well, e.g., a phrase like “This is my coffee cup” indicates
owner and use of a learned object.

The deliberative layer can be complemented by a compo-
nent which integrates planning capabilites. This planner is
responsible for generating plans for navigation tasks, but can
be extended to provide additional planning capabilities which
could be necessary for autonomous actions without the human.
As the execution supervisor can only handle single commands,



a sequencer on the intermediate layer is responsible for decom-
posing plans provided by the planner. However, in this paper
we will focus on the interaction capabilities of the robot.

III. HARDWARE

Our system architecture is implemented on our mobile
robot BIRON (see Fig. 2). Its hardware platform is a Pioneer
PeopleBot from ActivMedia with an on-board PC (Pentium
III, 850 MHz) for controlling the motors and the on-board
sensors and for sound processing. An additional PC (Pentium
III, 500 MHz) inside the robot is used for image processing
and for data association.

The two PCs running Linux are linked
by an 100 Mbit Ethernet LAN and the
controller PC is equipped with wireless
LAN to enable remote control of the
robot. As additional interactive device a
12” touch screen display is provided on
the front side.

A pan-tilt color camera (Sony EVI-
D31) is mounted on top of the robot
at a height of 141 cm for acquiring
images of the upper body part of humans
interacting with the robot. Two AKG
far-field microphones which are usually
used for hands free telephony are located
at the front of the upper platform at a
height of 106 cm, right below the touch
screen display. The distance between the
microphones is 28.1 cm. A SICK laser
range finder is mounted at the front at a
height of approximately 30 cm.

Fig. 2. BIRON.

IV. THE PERSON ATTENTION SYSTEM

A robot companion should enable users to engage in an
interaction as easily as possible. For this reason the robot has
to continuously keep track of all persons in its vicinity and
must be able to recognize when a person starts talking to
it. Therefore, both acoustic and visual data provided by the
on-board sensors have to be taken into account: At first the
robot needs to know which person is speaking, then it has
to recognize whether the speaker is addressing the robot, i.e.,
looking at it. On BIRON the necessary data is acquired from
a multi-modal person tracking framework which is based on
multi-modal anchoring [8].

A. Multi-Modal Person Tracking

Multi-modal anchoring allows to simultaneously track mul-
tiple persons. The framework efficiently integrates data coming
from different types of sensors and copes with different
spatio-temporal properties of the individual modalities. Person
tracking on BIRON is realized using three types of sensors.
First, the laser range finder is used to detect humans’ legs.
Pairs of legs result in a characteristic pattern in range readings
and can be easily detected [8]. Second, the camera is used to
recognize faces and torsos. Currently, the face detection works

CP = communication partner
U = user command

top—down attention
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%)
U: Stop! U: Look!
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PT:NoPerson v PT:NoSpeakingPerson
3
'§ PT:NoVoice PT:NoPerson

&
&

' bottom-up attention

Sleeping triggered by events from

person tracking (PT)

Fig. 3. Finite state machine realizing the different behaviors of the person

attention mechanism. Commands from the user, that are processed by the
dialog component, are displayed in bold face.

for faces in frontal view only [17]. The clothing of the upper
body part of a person is observed by tracking the color of the
person’s torso [7]. Third, the stereo microphones are applied
to locate sound sources in front of the robot. By incorporating
information from the other cues robust speaker localization
is possible [17]. Altogether, the combination of depth, visual,
and auditory cues allows the robot to robustly track persons
in its vicinity.

However, since BIRON has only limited sensing capabilities
— just like a human has only limited cognitive resources —
we implemented an attention mechanism for more complex
situations with many people moving around BIRON.

B. Attention Mechanism

The attention mechanism has to fulfill two tasks: On the
one hand it has to select the person of interest from the set
of observed persons. On the other hand it has to control the
alignment of the sensors in order to obtain relevant information
from the persons in the robot’s vicinity.

The attention mechanism is realized by a finite state ma-
chine (see Fig. 3). It consists of several states of attention,
which differ in the way the robot behaves, i.e., how the pan-
tilt unit of the camera or the robot itself is controlled. The
states can be divided into two groups representing bottom-
up attention while searching for a communication partner and
top-down attention during interaction.

When bottom-up attention is active, no particular person is
selected as the robot’s communication partner. The selection of
the person of interest as well as transitions between different
states of attention solely depend on information provided by
the person tracking component. For selecting a person of



interest, the observed persons are divided into three categories
with increasing degree of relevance. The first category consists
of persons that are not speaking. The second category com-
prises all persons that are speaking, but at the same time are
either not looking at the robot or the corresponding decision
is not possible, since the person is not in the field of view
of the camera. Persons assigned to the third category are of
most interest to the robot. These persons are speaking and
at the same time are looking at the robot. In this case the
robot assumes to be addressed and considers the corresponding
person to be a potential communication partner.

Top-down attention is activated as soon as the robot starts to
interact with a particular person. During interaction the robot’s
focus of attention remains on this person even if it is not
speaking. Here, in contrast to bottom-up attention, transitions
between different states of attention are solely triggered by the
execution supervisor which reacts to user commands processed
by the dialog component. For detailed information concerning
the control of the hardware see [12].

V. SPEECH PROCESSING

As speech is the most important modality for a multi-
modal dialog, speech processing has to be done thoroughly.
On BIRON there are two major challenges: Speech recognition
has to be performed on distant speech data recorded by the
two on-board microphones and speech understanding has to
deal with spontaneous speech.

While the recognition of distant speech with our two mi-
crophones is achieved by beam-forming [18], the activation of
speech recognition is controlled by the attention mechanism
presented in the previous section. Only if a tracked person is
speaking and looking at the robot at the same time, speech
recognition and understanding takes place. Since the position
of the speaker relative to the robot is known from the person
tracking component, the time delay can be estimated and taken
into account for the beam-forming process.

The speech understanding component processes recognized
speech and has to deal with spontaneous speech phenomena.
For example, large pauses and incomplete utterances can occur
in such task oriented and embodied communication. However,
missing information in an utterance can often be acquired
from the scene. For example the utterance “Look at this”
and a pointing gesture to the table can be combined to form
the meaning “Look at the table”. Moreover, fast extraction
of semantic information is important for achieving adequate
response times.

We obtain fast and robust speech processing by combining
the speech understanding component with the speech recog-
nition system. For this purpose, we integrate a robust LR(1)-
parser into the speech recognizer as proposed in [24]. Besides,
we use a semantic-based grammar which is used to extract
instructions and corresponding information from the speech
input. A semantic interpreter forms the results of the parser
into frame-based XML-structures and transfers them to the
dialog manager. Hints in the utterances about gestures are also

incorporated. For our purpose, we consider co-verbal gestures
only.

For the object attention system it is intended to use this
information in order to detect a specified object. Thus, this
approach supports the object attention system and helps to
resolve potential ambiguities.

VI. DIALOG

The model of the dialog manager is based on a set of
finite state machines (FSM), where each FSM represents a
specific dialog [23]. The FSMs are extended with the ability
of recursive activation of other FSMs and the execution of an
action in each state. Actions that can be taken in certain states
are specified in the policy of the dialog manager. These actions
include the generation of speech output and sending events like
orders and requests to the execution supervisor. The dialog
strategy is based on the so-called slot-filling method [22].
The task of the dialog manager is to fill enough slots to
meet the current dialog goal, which is defined as a goal
state in the corresponding FSM. The slots are filled with
information coming from the user and other components of the
robot system. After executing an action, which is determined
by a lookup in the dialog policy, the dialog manager waits
for new input from the execution supervisor or the speech
understanding system.

As users interacting with a robot companion often switch
between different contexts, the slot-filling technique alone is
not sufficient for adequate dialog management. Therefore, the
processing of a certain dialog can be interrupted by another
one, which makes alternating instruction processing possible.
Dialogs are specified using a declarative definition language
and encoded in XML in a modular way. This increases
the portability of the dialog manager and allows an easier
configuration and extension of the defined dialogs.

VII. INTERACTION CAPABILITIES

In the following we describe the interaction capabilities
BIRON offers to the user in our current implementation.
Initially, the robot observes its environment. If persons are
present in the robot’s vicinity, it focuses on the most interesting
one. A user can start an interaction by greeting the robot with,
e.g., “Hello BIRON” (see Fig. 3). Then, the robot keeps this
user in its focus and can not be distracted by other persons
talking. Next, the user can ask the robot to follow him to
another place in order to introduce it to new objects. While the
robot follows a person it tries to maintain a constant distance
to the user and informs the person if she moves too fast. When
the robot reaches a desired position the user can instruct it to
stop. Then, the user can ask the robot to learn new objects. In
this case the camera is lowered to also get the hands of the
user in the field of view. When the user points to a position
and gives spoken information like “This is my favorite cup”,
the object attention system is activated in order to center the
referred object. However, since the gesture recognition and the
object attention modules are not yet integrated in our system,
this behavior is simulated by always moving the camera to a



Fig. 4.

Several scenes from users interacting with BIRON during our first
user studies.

predefined position when reaching the attentional state Object.
If the user says “Good-bye” to the robot or simply leaves
while the robot is not following the user, the robot assumes
that the current interaction is completed and looks around for
new potential communication partners.

VIII. EVALUATION

We carried out first user studies with BIRON by assessing
qualitative statements from users about the capabilities of
BIRON. We asked 21 subjects to interact with BIRON. Fig-
ure 4 shows some interaction scenes from these experiments.
Interaction times (i.e. the time where only one user interacted
with BIRON) averaged between 3 and 5 minutes. As an
introduction the users were given an overview of BIRON’s
interaction capabilities which displayed a schema of potential
commands similar to the graph shown in Figure 3. Afterwards
they had to fill out a questionnaire where we asked, among
others, for the most and the least preferred features that they
had experienced during their interactions with BIRON. More
detailed results of this evaluation are reported [19].

It turned out that the most interesting features for users
were the natural language interface and the person attention
behavior (see Fig. 5). The more task-oriented functions — the
following behavior and the object learning ability — received
less positive feedback. This indicates that the functional ca-
pabilities of BIRON did not receive as much attention as one
would expect and seem to be obscured by other features of
the system.

On the other hand, although all users did already have some
experience with speech recognition systems (ASR), the most
frequently named dissatisfaction concerned the errors of the
ASR system (see Fig. 6). Wishes for a more flexible dialog
and a more stable system were the only other significant
dimensions of answers to this open question, although less
frequently named.
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These results emphasize the importance of a natural lan-
guage interface which allows for natural interactions. However,
they also demonstrate that users are extremely sensitive to
problems that occur within the communication. Thus, the nat-
ural language capability of a robot is a crucial part for human-
robot interaction. If the communication does not proceed in a
smooth way, the user will not be motivated to access all the
potential functionalities of the robot.

In addition to these results we also assessed the usefulness
of the feedback of different internal processing results and
states. It turned out that users generally found feedback
very helpful. However, users tend to have highly individual
preferences as to the means of feedback they prefer. While
some users liked to see the results of the ASR system, others
found these too technical and disturbing from the actual task.
On the other hand, the feedback of the internal attentional
state of the system was generally perceived as very helpful.
This shows that while feedback on the internal system status is
helpful it has to be conveyed in an acceptable way to the user.
A powerful means that humans use in their communication
are nonverbal signals such as gestures or mimic. It seems to
be promising to implement more of such nonverbal commu-
nication on a robotic companion as demonstrated on sociable



robots such as Kismet or Leonardo ([3], [4]).

IX. CONCLUSION

In order for a robot to be accepted as a social communica-
tion partner it should exhibit a range of features and function-
alities. The main features that current state-of-the-art robots
exhibit concern embodiment, human-oriented perception and
dialog.

In this paper we argued that the levels of embodiment
and human-oriented perception, that current state-of-the-art
robots share, have reached a standard which is — with the
exception of missing actuators — quite acceptable for human
users. We demonstrated this with first user studies on BIRON
which showed that the attentional behavior of BIRON receives
significant positive feedback while the functional features
(person following, object learning) did not receive as much
attention by the same subjects. We suppose that this is due
to the limitations of the natural language interface which,
while being the preferred communication channel for human
users, is currently the most critical system component. Here,
user wishes direct our research towards a more robust speech
recognition system and a more flexible dialog. We are cur-
rently planning to use a head-mounted microphone for getting
cleaner speech for the speech recognition system in addition to
the stereo microphones that we use for the speaker localization.

These results indicate that a robot companion has to show
acceptable communication skills in order to be acceptable
both at a social and a functional level. They also demonstrate
that it is necessary to tightly couple user studies with design
and development phases. In order to build robots that are
acceptable as social communication partners it is necessary
to identify critical aspects of the system. Within the design-
development-evaluation cycle of BIRON the current findings
direct our research towards developing new means for a more
robust, embodied communication framework.
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Keeping track of humans. have | seen this person before?
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Abstract— In this paper we describe a system which enables
a mobile robot equipped with a color vision system to track
humans in indoor environments. We developed a method for
tracking humans when they are within the field of view of
the camera, based on motion and color cues. However, the
robot also has to keep track of humans which leave the field
of view and re-enter later. We developed a dynamic Bayesian
network for such a global tracking task. Experimental results
on real data confirm the viability of the developed method.

Index Terms— Human-robot interaction, people tracking,
vision-based user interfaces.

|. INTRODUCTION

Current robotic mobile platforms are moving out of
the factory floor into environments inhabited by human.
Examples are museum robots or exhibition robots [2], [18],
care-for-elderly robots [6], office robots [3] and home and
entertainment robots [19]. In their role as guide, servant or
companion these systems have to interact with the humans
they encounter. The robot has to be aware of their presence,
intentions and context, and has to be responsive to their
needs, habits, gestures and emotions. As a part of this
tremendous difficult task we present in this paper a system
which is able to keep track of multiple people and is able
to identify them.

Tracking multiple people has been traditionally studied
for surveillance with static cameras, where the research
focuses on detection of moving objects, the fusion of data
from multiple overlapping cameras and on the association
(tracking) between non-overlapping cameras [12], [20].
In robotic applications typically laser range finders are
used [15] or combinations of laser and vision, where the
vision is used for identification [5], [9]. Detecting moving
persons with a moving camera is also studied in the field
of intelligent vehicles [10]

In this paper we focus on the problem of tracking and
(re)identification people from a (possibly moving) mobile
robot equipped with a vision system.

Il. OVERVIEW

In order to track the encountered people, a robot must
associate persons detected in its field of view with the
people that were observed earlier. The task is typically
(e.g9. [12]) broken down into two subproblems: 1) local
tracking, where the person remains in the field of view and

2) global tracking, which is the association between local
tracks. Local tracking takes place at a frame-to-frame level
and aims to collect all observations of an individual as
long as it stays in the robot’s field of view. Global tracking
aims to find a correspondence between a local trajectory
of some person with other (earlier) local trajectories of the
same person.

The essential difference between the two tasks follows
from the assumption of person’s smooth motion between
frames, which provides important cues for frame-to-frame
tracking. In this paper we treat local tracking as a video
preprocessing step, and focus on identification from local
trajectories, as outlined in Fig. 1.

In section 111 we present our approach for detection and
local tracking from a robot platform. In section IV we
present our global tracking method. A generative model is
presented in which each person is identified with an unique
label and each local trajectory is considered as a noisy
observation from the hidden label. A Bayesian approach is
used to determine the posterior density on the labels given
the observations. For online performance we developed
an approximation algorithm which falls into the class of
deterministic assumed-density filtering approximations [4].
In section V we present experimental results on real data.

I1l. OBJECT DETECTION AND LOCAL TRACKING

Our video processing module needs to detect people
visible within the robot’s field of view, has to represent the
detected persons as pixel regions (blobs) and has to track
each blob as long as the corresponding person remains
visible. We need to known which pixels belong to a person
in order to give an accurate description on its appearance,
which later becomes the key cue for identification. The
task is particularly difficult since the robot, and hence the
camera, may be in motion.

We use three processes to detect and track moving
objects in a static background: a) an extension of the
"background subtraction’ technique, b) an optic-flow based
method and c¢) a color-histogram based tracker. Robot
motion information is used to switch between the optic-
flow based process and the background subtraction process.
Figure 1 shows the scheme of the module.
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Fig. 1. Basic components of the identification system.

A. Object detection with a static camera

One of the most commonly used approaches for the de-
tection of moving objects with a static camera is presented
in [17] and further elaborated in [21]. We used the latter
method, extended with a shadow-pixel removal from [14].
In a postprocessing step we filter the image to extract blobs.
We used here just first two moments of the blobs to detect
the interesting ones. Since the procedure is on-line and
adaptive we have to take care when the robot state changes
from moving to static: background estimation should be
started carefully. The objects that were tracked during the
moving phase might stay still and occlude a part of the
background. This part of the background is learned only
when the objects that were tracked during the moving phase
leave the image.

B. Object detection with moving camera

In the case of a moving platform, we use the full 3D
rotation and translation motion model. Our approach is
similar to the recent robust solution from [16], but simpler
and appropriate for real-time applications. We track 100
corner-like points using the Kanade-Lucas-Tomasi tracker.
We use a robust method to estimate the fundamental matrix
and detect the points that deviate from the model. The
detected points correspond to the moving objects, which
can also be non-rigid. An example is presented in Fig 2.
To estimate the position of the object we use again the
second order moments to approximate the 2D shape of the
object by an ellipse. We use the moment estimates from
the previous frame and keep them fixed. We use the mean-
shift algorithm [13] to find the ellipse that will contain the

selected features (filled boxes
represent the features that do not fit
the rigid motion model of the scene)

Fig. 2.

Robust object tracking with a moving camera.

most of the detected points.

C. Color-histogram tracking

Using color-histogram as the model of the tracked object
is a very robust representation of the object appearance. An
efficient method for color-histogram-based object tracking
is presented in [7] and extended by [22]. The shape of
the tracked non-rigid object is approximated by its second
order moments - an ellipse. The appearance of the object
is described by its color histogram. The algorithm finds
the candidate region from the new image that maximizes
the similarity function between the color histogram of the
object and the color histogram of the candidate ellipsoidal
region. The similarity measure we use is the Bhattacharrya
coefficient (see [7]). We use the estimated position of the
objects from the previous frame (as estimated by the back-
ground subtraction or optic flow method) to initialize the
search but we also try some random initializations to find
global maximum. This algorithm is robust to movement of
the camera or when the object remains static for a long
time. However, the algorithm does not detect objects but
just finds the most similar region in the image.

IV. GLOBAL TRACKING (RE-IDENTIFICATION)

Global tracking aims to re-identify a person when it
leaves the filed of view and re-renters later. This task
requires association of local trajectories. The problem



cannot be solved with smooth-motion based trackers (e.g.
Kalman filter), due to motion discontinuity between local
trajectories.

We consider a local trajectory of a person as a single
observation y; = {ox,dx}, where k is the observation
index (in time order), o, describes r-dimensional color
features computed while a person was visible; and d; =
{t5,s5.t}, s} are spatio-temporal features: the robot’s
location (s7) and time (t7) when the person entered the
filed of view, and location (s!) and time (¢}!) — when quited.

The underlying idea is to identify every person with
an unique label and define a probabilistic dependency (a
generative model) between the labels and observations.
This dependency takes the form of a mixture model,
where each mixture component is parameterized by the
state of a different person. Since the number of people
is unknown, we postulate a new mixture component for
every observation. Our model resembles “Dirichlet process
mixture models” [1], which have been recently applied to
tracking with multiple static cameras [20].

A. Generative Model

Although the underlying color properties of a person do
not change, the color features differ whenever the person
is observed due to the varying pose or illumination. We
assume that the features are samples from a Normal pdf
specific to the person. For every observed o, we introduce a
latent variable x;, = {my, Vi } that represents parameters
of the Normal density (kernel) from which oy, is sampled.
The rx 1 vector m describes the person’s specific, expected
features. The r x r covariance matrix V tells how sensitive
the person’s appearance is to the changing observation
conditions. For instance, the appearance a person dressed
uniformly in black is relatively independent of illumination
or pose, so his/her covariance has small eigenvalues. The
appearance of a person dressed in white or non-uniform
colors is easily affected by pose or illumination, so we
model such a person with a ’broad’ kernel.

We treat the parameters + = {m, V} as a latent state
of an object. The state is considered a random variable
with a prior distribution 7(x). In Bayesian statistics [11], a
convenient joint model for the mean m and covariance V
of a Gaussian kernel is a product of a Normal () density
w.r.t m, and an Inverse Wishart (ZW) density w.r.t V. The
ZW model is a multivariate generalization of the Inverse
Gamma distribution. We denote the joint model as:

m(x) = ¢(x]6p) = N(m;ag, ko V)IW(V;n9,Co) (1)

where 6y = {ag, ko, 10, Co} are hyperparameters defining
the prior density [11]. One of the greatest advantages of this
approach is that the noise variance need not be learned with
a maximum likelihood criterion (e.g. with EM algorithm).
The noise variance is person-dependent, and as a part of
the state, it will be estimated on-line by a filtered density.

The spatio-temporal features d of a local pass are ob-
served noise-free. A sequence {d%"), dé”), ...} assigned to
nth person (denoted by the superscript) defines a path in
the building. We model the path as a random, first-order
Markov process. The path is started by sampling from an
initial distribution Pj,, and extended by sampling from a
transition distribution Pg(d§1)1|d§”)). The distributions Ps
and Ps, follow from the topology of the environment and
robot’s prior knowledge about typical paths. One can use
a simple model that just prevents observing a person more
than once at the same time, or an elaborate (but first-order)
model of paths, that is learned beforehand [5].

a) Association variables: Our model is organized into
slices, where each slice corresponds to a single observation
yi. For every y;. there is a corresponding variable s, that
denotes the label of the person to which y; is assigned.
Within the first & data, y1.x = {1,...,yx}, there may be
at most k different people, so s, has k different states;

sp € {1,...,k}. The label s; is accompanied by auxiliary
variables: a counter cj, and pointers z,il),...,z,ik). The
counter, ¢, € {1,...,k}, indicates the number of different

persons present in the data y1.,. The nth pointer variable,
z,i”) € {0,...,k — 1}, denotes the index of the last
observation of the nth person before slice k. Value z,g") =0
indicates that the person n has not yet been observed. At
the kth slice, there can be up to & persons, so we need
z,i”) for n = 1,..., k. Note, that the auxiliary variables
provide immediate "lookup’ reference to the information
that is already encoded by si.x.

b) One-step generation: The counter is initialized
co = 0 and our model generates observations one-by-one.
To generate yx, k > 1, we select a label s;. People enter
field of view irregularly, so we choose uniformly between
observing one of the known ¢;_; persons or a new one;

sk ~ Uniform(1, ..., ck—1,ck—1 + 1). 2

The uniform distribution is one choice; other distributions
are also applicable. Given the label we deterministically
update the counter and pointers

Ck = Cp—1 + [sk > k1], (3)
M =0, (4
A =2 sk Al + (k= Dlskor =nl,  (5)

where n = 1,...,k — 1. The symbol [f] is a binary
indicator; [f] = 1 iff the binary proposition f is true, and
[f] = 0 otherwise. If the label indicates a new person,
s = cx—1 + 1, then the counter has to be increased, as
in (3). The pointers summarize associations before slice k,
so we update them using previous label s;_1, as in (4)-
(5). A person labeled as & cannot be observed before slice
k, so the pointer to his/her last observation z,(f) is set to
zero. The pointer to the last observation of the nth, n < k,
person either does not change or we set it to the index of



the preceding observation, & — 1, only if the label of this
observation was s;_1 = n.

The second step is generating the latent state xj, of the
person indicated by sg. If this person has been already
observed, then the index of his/her last observation z,(f’”‘)
is non-zero. By our assumption the state does not change,
so we copy = from the previous instance. If the current
person is observed for the first time, z,(f’c) = 0, then we
sample the state from the prior = (x);

T = xz,(jm[zl(jk) > 0]+ xneW[Z]E:Sk) = 0], (6)

"~ (). 7

The final step is rendering the observation y;, = {ox, dx}

given the latent state, (i.e. the parameters of a Gaussian

kernel) z;, = {my, V. } and the pointer to the past spatio-
temporal features of the current person, z,(j’c) =

O ~ N(mka Vk)a (8)
dy, ~ Ps(dg|d;)[i > 0] + Ps,(dg)[i = 0]. 9)
B. Graphical model

Figure 3 shows the Dynamic Bayesian Network repre-
senting our model, where we have used a variable h, =
{sk,ck,zél),...,zék)} to denote the discrete association
variables at the kth slice.

From Fig. 3 we realize that the association variables
evolve as a Markov process with transitions P(hg|hr—1)
following from (2)-(5). The auxiliary variables evolve
deterministically when conditioned on the labels.

The state evolutions x1.; resemble a Dirichlet process
(DP) mixture model [1]. Such models are applied for
inference of mixture distributions with unknown number
of components. A DP mixture model defines the prior for
parameters of a component density as a mixture of a global
prior and Delta densities centered around parameters of
other components. To see the relationship with our model,
consider state prediction p(zy|x1.x—1, ki) following from
equations (6)—(7): when we integrate over z,(f"‘), then the
state z;, will be distributed according to a density which is
a mixture of the prior w(x) and k& — 1 Delta distributions
d(xr —x;), where j =1,..., k—1. However, the model is
not identical with DP because the spatio-temporal features
affect the predictive distribution for states.

C. Online tracking by probabilistic filtering

When an observation y;, of some person arrives, we solve
association by probabilistic filtering, i.e., computing the
filtered distribution of the latent variables conditioned on
all available data y;.;. From this distribution we find the
most likely label s; to identify the current person. Figure 3
reveals that latent states are not Markovian: the influence of
past y1.,—1 is mediated through all variables x;.;_1, there-
fore the filtered density takes the form p(z1.x, hi|y1.k)-

Unfortunately, this density cannot be computed exactly,
what is a typical problem with hybrid (state-space) models

R R,

i 1 < xE > Th—1 @P
Fig. 3. A graphical model, represented as Dynamic Bayesian Network.

The latent variables are zy.x, hi.x, the observed yy.,. For clarity, the
dependencies induced by spatio-temporal features are not shown.

(e.g. Switching Kalman Filter). A convenient on-line ap-
proximation method is assumed-density filtering [4] (ADF),
where the filtered density is approximated with a factorial
family. We choose a family

k
p(@1ak, P |y1x) =~ Q(Skack)HQk(xi)Q(Zl(j)) (10)

i=1

that factorizes the discrete variables from the continuous.
Approximating the joint distribution on &, with a product
of simpler models sidesteps maintaining a large table with
probabilities for every combination of their state. The state
is represented with a ’Normal-Inverse Wishart” family;
qx(z;) = ¢(x4]0;.1), where 6, ; are hyperparameters spe-
cific to the ith kernel after & filtering steps (c.f. (1)). (This
family is conjugate to the Normal density [11].)

One-step filtering: When y;, arrives we have to com-
pute the assumed approximation to the filtering density.
First, we find a predictive density

pr(@re, i) = Y p(hilh—1)p(n |61, hi)
hi—1

X p(®1k—1, he—1|y1e—1), (11)

where the last term comes from the previous filtering step.
The filtered density is found by updating

p(1:k, hilyr:k) X D(Yk|Tk, hi)pe(@1:5, h) (12)

where p(yk|zk, hy) follows from (8)—(9). The dependency
of y, on spatio-temporal features dy.p_; IS not written
explicitly, however it is always assumed. The term (12)
does not belong to the assumed family. ADF projects
it to such member of the family that offers the closest
approximation in the Kullback-Leibler (KL) sense. The
nearest in the KL-sense factorial distribution is the product
of marginals [4], so we recover the representation (10) by
computing the marginals of (12).

The detailed marginals are provided in [20]. We note
that the marginalization is efficient for two reasons. First,
our model is sparse. Second the auxiliary variables evolve
deterministically when conditioned on labels.



color features from a local trajectory
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Fig. 4. a) Appearance features of a person. The features are defined
as three color vectors (R,G,B), where each color vector was the average
pixel color in a corresponding horizontal region R;, i = 1,2, 3 in the
person’s image. The height of each region is 25% of the blob’s height.
The “skip areas” are meant to remove parts that have little discriminative
power. Their height was set to 12.5% of the total height. b) The first
three components of the feature vector computed from subsequent blobs
of a local trajectory.

V. EXPERIMENTS

We have tested our method using video clips recorded
by a simple mobile platform equipped with a color camera
and odometers. The clips contain observations of people
who were followed by a robot in three places with different
illumination conditions in an office-like environment.

Background substraction: We allowed for online
learning of background model when the platform was
static. Our implementation [21] sets the learning rate so that
an object is considered background only when it remains
static for more than 220 frames (15s at 15 fps).

Color features: Every local trajectory y; includes
multiple frames when a person was detected in the field
of view. We have taken the appearance features oy to be
the averages over features computed form multiple frames.
In every frame, the blob representing a person is split
into three fixed regions as in Fig. 4. For each region we
computed the 3D average color, obtaining in total a 9D
feature. The regions are our heuristic for describing people
that provide a low-dimensional summary of color content
and its geometrical layout (unlike color histograms). In
order to compute color features that are independent from
illuminating light, we have transformed the original RGB
pixels into a color-channel normalized space [8].

Prior state distribution: Our method requires a prior
distribution 7(x) on states i.e, means and covariances
of Gaussian kernels. This distribution 7(z) is a *Normal-
Inverse Wishart” density. We set its parameters 6, =
{ay, ko, 10, Co} as follows: the expected features a; =
09«1 (9 dimensional zero vector); the scale ko = 100;
the degrees of freedom 7y = 9 (dimensionality of ob-
servations), the matrix Co = 10 3Igy9, Where Igyg
is a 9 dimensional identity matrix. Parameter C, with
small eigenvalues indicates that we are expecting relatively
’sharp’ kernels. Since the means m are not known, we set
the scale kg to a large value.

Spatio-temporal features: In the experiments we have
used a simple Markov chain model for spatio-temporal
features dj, of a local trajectory ox. The prior density Ps,
was uniform. The transition model Ps was set to prevent
starting a new local trajectory of a person before his/her
previous trajectory had finished: Ps(d;|d;) = 0 iff t§ <,
and Ps(d;|d;) =1 otherwise.

Results: The method is evaluated by measuring the
number of mis-identified observations (identification error)
and the error in the number of distinct people recognized
from the data. In the first video clip all persons were
correctly detected, tracked and identified. Figure 5 shows
several frames from the clip with identities of detected
people given by numerical labels. In this clip persons were
observed in two places with similar illumination conditions.
During the second video clip, our platform traveled a
longer distance, between two places where the illumination
conditions changed significantly. In this case one out of
five encountered persons was wrongly identified as a new
individual (rather than a previously observed one). Sample
frames from this clip are shown in Fig. 6. The complete set
of labeled clips is available at the following web address:
http:\\www.science.uva.nl\"wzajdel\lcra.

Our experiments simulate home-like environments,
where the robot has to cope with a small number of distinct
persons. The tests show, that although the robots postulates
a new person with every new local trajectory, the model is
able to estimate the number of distinct people when the
illumination changes slowly.

V1. CONCLUSIONS AND FURTHER WORK

Keeping track of identities of multiple persons observed
from a mobile robotic platform is a complex task that
requires detecting people with a mobile camera, local
tracking within filed of view and identification when people
re-enter the field of view. We have presented a system
that combines various visual cues and robot’s odometric
data to achieve detection and local tracking that is robust
to occlusions, slow illumination changes and non-static
(but rigid) background scenes. We have also presented a
Bayesian algorithm for visual identification of people that
left the field of view and reappeared later. The algorithm
relies on spatio-temporal and visual cues to distinguish
between people. In the presented experiments we have
shown that in an office-like scenario already weak mo-
tion constraints lead to accurate associations under slowly
changing illumination. The experiments also reveal that
the major challenge for vision-based identification are
varying illumination conditions. The future extensions of
the method have to address this problem, by e.g. using
texture-based features to describe persons appearance.
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Fig. 5.

Selected frames (353, 618, 2272, 2847) from the first test sequence. Each frame shows the estimated bounding box and estimated label of

every detected person. Objects with the same label correspond to the same person. We see that all detected persons are correctly associated.
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initial location (the leftmost frame) and final location (other frames). Boxes labeled as “2” and “4” represent in fact the same person. The other persons
are correctly identified.
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Abstract

The iterative procedure called 'mean-shift’ is a simple ro-
bust method for finding the position of a local mode (local
maximum) of a kernel-based estimate of a density function.
A new robust algorithm is given here that presents a natural
extension of the 'mean-shift’ procedure. The new algorithm
simultaneously estimates the position of the local mode and
the covariance matrix that describes the approximate shape
of the local mode. We apply the new method to develop
a new 5-degrees of freedom (DOF) color histogram based
non-rigid object tracking algorithm.

1. Introduction

Visual data is often complex and there are usually many data
points that are not well explained by the applied models. In
order to deal with the outliers robust estimation techniques
are very important for solving vision problems [8]. Vision
problems are often very specific and the methods from ro-
bust statistics [7] need to be modified in such a way that they
are made appropriate for vision problems. A robust method
that is often used for solving vision problems [3, 2, 1] is
the *mean-shift’ procedure [9]. Data samples are used to
get a kernel based approximation of the probability density
function [17]. The mean-shift algorithm is a procedure to
search for a local mode of the empirical density function.
The position of the local mode is known to be very tolerant
to outliers.

Efficient color-histogram-based tracking presented in [3]
is based on the mean-shift procedure. Color histogram is a
very robust representation of the object appearance [16]. In
[3] the shape of the tracked non-rigid object is represented
by an ellipse. A similarity function is defined between the
color histogram of the object and the color histogram of a
candidate ellipsoidal region from a new image from an im-
age sequence. The mean-shift procedure is used to find the
region in the new image that is the most similar to the ob-
ject. See section 5 and [3] for more details. The problem of

adapting the ellipse that approximates the shape of the ob-
ject when the shape and the size of the tracked object change
remained unsolved. Some local shape descriptors were used
in [5]. In [3] after each tracking step the ellipse is adapted
by checking a +10% larger and a -10% smaller ellipse and
choosing the best one. In [14] an extensive search is per-
formed within a range of scales of the ellipse.

In this paper we present an extension of the mean-shift
algorithm. Instead of only estimating the position of a local
mode the new algorithm simultaneously estimates the co-
variance matrix that describes the shape of the local mode.
This is illustrated in figure 1. Further, we show how the
algorithm can be applied to color-histogram-based object
tracking in a similar way as in [3]. We propose a 5-DOF
color-histogram-based tracking method that estimates the
position of the tracked object but also simultaneously esti-
mates the ellipse that approximates the shape of the object.
The new algorithm solves the mentioned problem of adapt-
ing the ellipse in an efficient way.

The paper is organized as follows. In section 2 we intro-
duce mean-shift as a robust estimation technique. In section
3 we present how the mean-shift can be viewed as an EM-
like algorithm. In section 4 we extend the EM-like algo-
rithm to estimate also the local scale. In section 5 we apply
the new algorithm to color histogram based tracking. Some
experiments are given in section 6 and in section 7 we report
some conclusions.

2. Extreme outlier model

We will denote a data set of [V independent samples by X =
{#1,...,Zn}. Let us assume that the probability density
function p(), for example a Gaussian p(Z) = N (&;0,V),
is a good generative model for our data. Maximum Likeli-
hood (ML) estimates for the mean vector g and the covari-
ance matrix V' are the values that maximize the likelihood
function [T\, p(;). Often in practice we are confronted
with a data set which is polluted by some outliers. Uniform
distribution 1/A (where A is the area of the domain of &)



can be used to model the outliers. If e presents the probabil-
ity that a data sample is an outlier, we can write a common
generative model, that takes into account the outliers, as:

P'(i) = e/A+ (1 - e)p(&i). (D

The likelihood of the data is now Hf\il p'(Z;) and Taylor
expansion of the likelihood in (1 — e) is given by:

N

(/AN + (/AN 1=e) Y p(@:) +O((1 - e)*). (2)

=1

In an extreme case where there are a lot of outliers, e is close
to 1 and only the first two terms matter [12]. The first term is
constant and the ML estimates are obtained by maximizing
Z?Ll p(&;). For Gaussian p, the objective function to be
maximized can be written as:

N
FO,V) = N(@;0,V). (3)
=1

Given a fixed V and if we add 1/N in front, (3) resem-
bles an empirical density estimate using Gaussian kernels,
where V' can be regarded as the bandwidth factor [17]. The
mean-shift can be used to get a robust estimate of 0 - the
mode of this empirical density function. In section 4 of this
paper we show how to get also robust estimates for V' using
this extreme outlier model. Vision problems often involve
analyzing only a local part of an image and disregarding the
data from the rest of the image regardless of how large the
image is. The extreme outlier model is obviously appropri-
ate for such problems.

The robust statistics procedure called ’iteratively
reweighted least squares’ (IRLS) [6] is very similar to the
mean-shift procedure. In fact we can see the mean-shift as a
version of IRLS for the extreme outlier model. In a similar
way, the new procedure we present here is a special version
of the robust scale estimators [11]. We mentioned that V' in
(3) can be regarded as the bandwidth factor in kernel-based
density estimation. However, the objective in bandwidth es-
timation [17] is quite different.

3. Mean-shift as an EM-like algorithm

If each data point has also a weight factor w;, a more general
version of (3) is given by:

N
FOV) =Y wiN(@:0,V). (4)
1=1

We would like to find the parameters 6 and V for which the
maximum value of (4) is achieved. This can be done iter-
atively using EM-like iterations [4, 13]. From the Jensen’s
inequality we get:

N - qi
j 7S wiN (Z;;0,V
logf(0,V) > G(0,V,q1, ....qn) = Zlog<z(qz_)>
=1 z
®)
where g;-s are arbitrary constants that meet the following
requirements:

N
> g =landg >0. (©6)
i=1
Let us assume that the current estimate values of the pa-
rameters are denoted by #*) and V*). The E and M steps
described below are repeated then until convergence:
1. E step: find ¢;-s to maximize G while keeping 6(%)
and V() fixed. It is easy to show that the maximum (equal-
ity sign in (5)) is achieved for:

4 = wiJ\/'(i"i; é'(k'), V(k)) (7)
DA OREON

2. M step: maximize G from (5) with respect to and V
while keeping g;-s constant. The g;-s are now fixed we need
to minimize only a part of G that depends on the parameters:

N
g0, V) = qilog N (70, V). ®)

i=1

From 6%9(5, V) =0 we get:

N N e
) Y TN (500 v (k)
A =3 g, = Zﬁlew/\/'( vy
i=1 SN wN (& 68, V(#))

Note that this update equation for the position estimate is
equivalent to the *mean shift’ update equation for the Gaus-
sian kernels. For other kernel types this might be different.
This new EM-like view of the problem will lead to update
equations for V' as described next.

4. Scale selection

If p*(Z) is the true distribution of the data, the expected
value of (3) is:

g[s@v) = [r@nv@iv. o

This can be seen as a smoothed version of the original p*
and the maximum with respect to V' does not have some de-
sirable properties [15]. For example, if p* is locally a Gaus-
sian NV (& 5*, V*), the expected value (10) is a smoothed
Gaussian NV (Z; 8%, V*+ V). The expected maximum is for
6 = 6, but unfortunately for the trivial value V' = 0 since
the value at the local mode is decreasing with larger V. We



normalize the result by multiplying density estimate (4) by
|V|?/? and we get what we can call a y-normalized’ func-
tion:

F0,V) = [V]72F@0,V). (11)

Under the same assumption that the local mode is approxi-
mately a Gaussian, the value at the mode will now be pro-
portional to |V|?/2 /|V*4V|*/2. The maximum with respect
to V is at:

a |\v|p/?

= 12

oV [V [1/2 0 (12
Since ;& [V| = [V| [2V ! — diag(V1)] we get:

VT 2V = diag(V )] [VHV|
— VPV [2(v4V) T — diag((VHV) 1] = 0. (13)
From here we get vV ' = (V*4V) "' and V = V™.

Obviously only for ye(0,1) we get a positive value. For
v = 1/2 it follows that expected maximum is for V' = V*.
The solution using the y-normalized function is not biased
and this is a desirable property of an estimation algorithm.

The extreme outlier model in the limit case can be ex-
plained also as a model where only one observation is not
an outlier [12]. Then it is understandable that V' can not be
estimated reliably using this model. The ~-normalization
can be seen as introducing a certain informative prior for
V' to regularize the solution and get non-biased estimates.
Another interesting connection is with some image filtering
algorithms. For example, in [10] y-normalized image con-
volution was studied for selecting the scale of the filtering
operator. If we have a 2D case and we replace p* in (10)
with an image, the connection with the image convolution
is evident.

The EM-like iterative algorithm from the previous sec-
tion can be applied to the y-normalized function. The only
difference is in the M-step. Instead of (8) we have now:

N
=Y alog|V"PN(#6,V).  (14)
i=1
The position update equation (9) stays the same. From
il g(9 V') = 0 it is easy to show that the update equation
for V in the M-step is given by:

VL = ﬂZq

where 8 =1/(1 — 7).

In figure 1 an example is shown to illustrate the perfor-
mance of the new algorithm. The simulated data consists
of 600 samples generated using a mixture of three Gaussian

= ) (& — 6RN)T (15)

distributions. The three modes are clearly visible in fig-
ure 1. The iterations (the 2-sigma contours of the estimated
Gaussian) of the mean-shift procedure are plotted in figure
la. In figure 1b we show the iterations of the new EM-like
algorithm with v = 1/2 (8 = 2). We can observe how the
new algorithm simultaneously estimates both the position
of the local mode and the covariance matrix that describes
the shape of the mode. Note that 5 = 2 is appropriate if the
underlying distribution is Gaussian. If some other distribu-
tion is approximated by a Gaussian some other value for 8
might be needed in order to avoid biased solution. Similar
parameter and similar discussion is also given in the stan-
dard robust statistics methods [11, 7]. The difference is that
the results we present here are for the extreme outlier model.

Initial position

@

a) mean-shift iterations

Initial position

Final solution’ Final solution

b) EM-shift iterations

Figure 1: Performance of the two algorithms on simulated
2D data.

5. Color histogram tracking

We assume that the shape of a non-rigid object is approx-
imated by an ellipsoidal region in an image. Initially the
object is selected manually or detected using some other
algorithm, background subtraction for example. Let Z; de-
note a pixel location and 50 the initial location of the center
of the object in the image. The second order moment can
be used to approximate the shape of the object:

Vo = > (T — 00)(Zi — 60)".
all the pixels that belong to the object

(16)
Further, the color histogram is used to model the object ap-
pearance. Let the histogram have M bins and let the func-
tion b(#;) : R? — 1,..., M be the function that assigns a
color value of the pixel at location Z; to its bin. The color
histogram model of the object consists then of the M val-
ues of the M bins of the histogram & = [01, ..., 0ps]7. The
value of the m-th bin is calculated by:

NVO

= N(@; 00, Vo)d [b(F:) — m] (17)
i=1



where 0 is the Kronecker delta function. We use the Gaus-
sian kernel AV to rely more on the pixels in the middle of
the object and to assign smaller weights to the less reliable
pixels at the borders of the objects. We use only the Ny,
pixels from a finite neighborhood of the kernel and the pix-
els further than 2.5-sigma are disregarded.

5.1. Similarity measure

Let us assume that we have a new image from an image
sequence and the object we are tracking is present in the
image. The goal of a tracking algorithm is to find the object
in the new image. Let an ellipsoidal region in the new image
be defined by its position # and its shape described by the
covariance matrix V. The color-histogram that describes
the appearance of the region is 7:’(9_', V') and the value of the
m-th bin is calculated by:

rm(0,V) = > N(@:0,V)6 (&) —m]. (18

The similarity of the region to the object is defined by the
similarity of their histograms. As in as in [3] we use Bhat-
tacharyya coefficient as a measure of similarity between two
histograms:

p|7v),5] = i Vi@ V)om. (19

The first order Taylor approximation around the current es-
timate 7(0(%), V' (¥)) is given by:

N
p [r”(@, V), 5] Rcp+ e iwiN(fi; 9,V), (20)

i=1
where ¢; and ¢, are some constant factors and

M

Om -
wi = mzz:l 0] V(’“))(S [b(Z;) — m]. (1)
Since the last term in (20) has the same form as (4) we can
use the new EM-like algorithm to search for the local maxi-
mum of the similarity function (20). The weights are recal-
culated before each iteration using (21) and then the update
is done using (7),(9) and (15). Some practical issues are
presented next.

5.2. Practical algorithm

For the sake of clarity we present here the whole algorithm:

Input: the object model g, its initial (k = 0) location

—

6*) and shape defined by V (k).

1. Compute the values of the color histogram of the cur-
rent region defined by 6(%) and V(*) from the current
frame using (18).

2. Calculate weights using (21).

3. Calculate g;-s using (7).

4. Calculate new position estimate g+ using (9).
5. Calculate new variance estimate V (F+1) using (15).

6. If no new pixels are included using the new elliptical
region defined by the new estimates §(*1) and V (++1)
stop, otherwise set k < k + 1 and go to 1.

The procedure is repeated for each frame. In the simplest
version the position and shape of the ellipsoidal region from
the previous frame are used as the initial values for the new
frame.

The function (20) that is regarded as the underlying den-
sity function is not a Gaussian. We also used the approxi-
mation that the weights w; are constant during one iteration.
The maximum of (20) is well defined with respect to V' for
( = 1. However since we disregard the samples further
than 2.5-sigma and it is easy to show that we should use
B = 1.1. The correct value for the § depends on the noise
that is present in the image sequence. Small errors in choice
of 3 leads to slightly biased solution but since the ellipse is
just an approximation of the shape this is acceptable.

Finally, because of the approximation that the weights w;
are constant during one iteration the convergence proof does
not hold. An additional line search should be performed
to make sure that we increase the value of (19) as it was
mentioned in [3]. However the approximation is usually
good in the small neighborhood and this is not needed. This
was also noted for the mean-shift algorithm presented in [3].

6. Experiments

The new 5-DOF color-histogram-based tracking was ap-
plied to a number of sequences and some results are re-
ported in this section. The position and shape of the tracked
objects is represented by the dashed ellipse.

First in figure 2 we illustrate the performance of the al-
gorithm. A player is selected as indicated by the elliptical in
figure 2a. For better presentation we increased the bright-
ness of the images we present here. The original images
was darker. The image is scaled 1.5 times in the vertical di-
rection and then rotated for 45 degrees as presented in figure
2b. We use the initial shape of the region and we manually
select a position in the new rotated and scaled image. The
iterations and the final of the mean-shift procedure are pre-
sented in figure 2b. In figure 2c we present the iterations
and the final solution of our algorithm. Both the new shape



a) the selected region

b) *mean-shift’ search

¢) EM-shift search

Figure 2: The mean shift and the new EM-like algorithm

and the position are accurately estimated. The new ellipti-
cal region contains the same content as the content of the
initial region.

The ’hall’ sequence (figure 3)is a long video from a
surveillance camera. Very hard lightning conditions are
present. We used only H and S from HSV color space to
be more robust to the light effects. The objects was repre-
sented using a 8 x 8 histogram in the HS space. Since the
objects were walking people we did not expect the orienta-
tion of the ellipse that approximates the shape of the objects
to be other than vertical. Therefore we constrained V' to be
diagonal. Two frames from that represent a typical situa-
tion from the video are presented in figure 3a. The object
moves towards the camera and the size of the object changes
considerably. Standard mean-shift tracking from [3] fails to
adapt to these size changes. This is similar to the sequence
that was used in [14]. Our algorithm has no problems with
adapting as the much slower extensive search method from
[14].

The "PETS1’ is a sequence from the standard data set
from www.visualsurveillance.org. The covariance matrix
is now not constrained to be diagonal since the vehicles are
also changing orientation. We used RGB space and 8 x 8 x 8
histogram. Two frames from the sequence are shown in 3b.

The "hand’ sequence is used to demonstrate the full 5-
DOF color-histogram-based tracking. To be robust to light
conditions we used again 8 x 8 histogram in the HS space.
The hand is tracked. The sequence has 250 frames and the
position and the shape of the hand are changing rapidly. In
figure 3c we can see that the new algorithm can track the
hand and also adapt to the shape of the object. Hand track-
ing was used for example in [18]. However the algorithm
they used is not very robust and can be used only for single
colored objects.

Finally, in figure 4 we present the number of iterations of
the algorithm for the *hand’ sequence. The average number
of iterations per frame was approximately 6. This is slightly
more then 4 that was reported for the mean-shift based it-

erations in [3]. The computational complexity of one iter-
ation of the new algorithm is slightly higher than the com-
putational complexity of the mean-shift. On average our
algorithm is around 2 times slower but still fast enough for
real-time performance. In our current implementation the
algorithm works comfortably in real-time on a 1GHz PC.

7. Conclusions

We presented a new 5-DOF color-histogram-based non-
rigid object tracking. We demonstrated that he new algo-
rithm can robustly track the objects in different situations.
The algorithm can also adapt to changes in shape and scale
of the object. The algorithm works in real-time and the
computational cost is only slightly higher than for the pre-
viously proposed algorithms that had problems with shape
and scale changes. The new color-histogram-based object
tracking procedure is based on a natural extension of the
mean-shift algorithm that can be useful also for many other
vision problems. This is a topic of our further research.
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Abstract

Background subtraction is a common computer vision
task. We analyze the usual pixel-level approach. We de-
velop an efficient adaptive algorithm using Gaussian mix-
ture probability density. Recursive equations are used to
constantly update the parameters and but also to simulta-
neously select the appropriate number of components for
each pixel.

1. Introduction

A static camera observing a scene is a common case of
a surveillance system. Detecting intruding objects is an es-
sential step in analyzing the scene. An usually applicable
assumption is that the images of the scene without the in-
truding objects exhibit some regular behavior that can be
well described by a statistical model. If we have a statisti-
cal model of the scene, an intruding object can be detected
by spotting the parts of the image that don’t fit the model.
This process is usually known as ”background subtraction”.

A common bottom-up approach is applied and the scene
model has a probability density function for each pixel sepa-
rately. A pixel from a new image is considered to be a back-
ground pixel if its new value is well described by its density
function. For a static scene the simplest model could be just
an image of the scene without the intruding objects. Next
step would be for example to estimate appropriate values
for the variances of the pixel intensity levels from the image
since the variances can vary from pixel to pixel. This single
Gaussian model was used in [1]. However, pixel values of-
ten have complex distributions and more elaborate models
are needed. Gaussian mixture model (GMM) was proposed
for background subtraction in [2]. One of the most com-
monly used approaches for updating GMM is presented in
[3] and further elaborated in [10]. These GMM-s use a fixed
number of components. We present here an improved algo-

rithm based od the recent results from [12]. Not only the pa-
rameters but also the number of components of the mixture
is constantly adapted for each pixel. By choosing the num-
ber of components for each pixel in an on-line procedure,
the algorithm can automatically fully adapt to the scene.
The paper is organized as follows. In next section we list
some related work. In section 3 the GMM approach from
[3] is reviewed. In sections 4 we present how the number
of components can be selected on-line and to improve the
algorithm. In section 5 we present some experiments.

2. Related work

The value of a pixel at time ¢ in RGB or some other color-
space is denoted by #(*). Pixel-based background subtrac-
tion involves decision if the pixel belongs to background
(BG) or some foreground object (FG). Bayesian decision R
is made by:

_ p(BGIZY) _ p(@Y|BG)p(BG)
- p(FGIZW)  p(EW|FG)p(FG)

(D

The results from the background subtraction are usually
propagated to some higher level modules, for example the
detected objects are often tracked. While tracking an object
we could obtain some knowledge about the appearance of
the tracked object and this knowledge could be used to im-
prove background subtraction. This is discussed for exam-
ple in [7] and [8]. In a general case we don’t know any-
thing about the foreground objects that can be seen nor
when and how often they will be present. Therefore we set
p(FG) = p(BG) and assume uniform distribution for the
foreground object appearance p(Z|FG) = cpg. We de-
cide then that the pixel belongs to the background if:

(@Y |BG) > cunr(= Repg), 2

where ¢y, is a threshold value. We will refer to p(Z| BG) as
the background model. The background model is estimated
from a training set denoted as X'. The estimated model is
denoted by p(Z| X, BG) and depends on the training set as



denoted explicitly. We assume that the samples are indepen-
dent and the main problem is how to efficiently estimate the
density function and to adapt it to possible changes. Ker-
nel based density estimates were used in [4] and we present
here an improvement of the GMM from [3]. There are mod-
els in the literature that consider the time aspect of an im-
age sequence and the decision depends also on the previous
pixel values from the sequence. For example in [5, 11] the
pixel value distribution over time is modelled as an autore-
gressive process. In [6] Hidden Markov Models are used.
However, these methods are usually much slower and adap-
tation to changes of the scene is difficult.

Another related subject is the shadow detection. The in-
truding object can cast shadows on the background. Usu-
ally, we are interested only in the object and the pixels corre-
sponding to the shadow should be detected [9]. In this paper
we analyze the only basic pixel-based background subtrac-
tion. For various applications some of the mentioned addi-
tional aspects and maybe some postprocessing steps might
be important and could lead to improvements but this is out
of the scope of this paper.

3. Gaussian mixture model

In practice, the illumination in the scene could change
gradually (daytime or weather conditions in an outdoor
scene) or suddenly (switching light in an indoor scene). A
new object could be brought into the scene or a present ob-
ject removed from it. In order to adapt to changes we can
update the training set by adding new samples and discard-
ing the old ones. We choose a reasonable time period 7" and
at time ¢ we have X = {z® ..., 2®=T)}. For each new
sample we update the training data set X7 and reestimate
p(Z| X7, BG). However, among the samples from the re-
cent history there could be some values that belong to the
foreground objects and we should denote this estimate as
p(#W|Xr, BG+ FG). We use GMM with M components:

M
p(E|Xr, BGHFG) = Y 5N (& fir,551)  (3)

m=1

where fil, ...,ﬁM are the estimates of the means and
01,...,0p are the estimates of the variances that de-
scribe the Gaussian components. The covariance ma-
trices are assumed to be diagonal and the identity ma-
trix I has proper dimensions. The mixing weights de-
noted by 7, are non-negative and add up to one. Given a
new data sample #(*) at time ¢ the recursive update equa-
tions are [12]:

Tom — T 4 a(0l) — 7,) 4)
T o + 08 (/1 )01 (5)
G2, — U?n + 055)(04/7%)(55&:1 - 8$n)v (6)

where 6, = ) — ﬁ’m. Instead of the time interval 7' that
was mentioned above, here constant « describes an expo-
nentially decaying envelope that is used to limit the influ-
ence of the old data. We keep the same notation having in
mind that approximately o« = 1/7. For a new sample the
ownership 05,? is set to 1 for the ’close’ component with
largest 7,,, and the others are set to zero. We define that a
sample is ’close’ to a component if the Mahalanobis dis-
tance from the component is for example less than three
standard deviations. The squared distance from the m-th
component is calculated as: D2, (7)) = §L4,,/62,. If
there are no ’close’ components a new component is gen-
erated with #p741 = a, ;AZMH = #W and 63741 = 09
where o is some appropriate initial variance. If the maxi-
mum number of components is reached we discard the com-
ponent with smallest 7, .

The presented algorithm presents an on-line clustering
algorithm. Usually, the intruding foreground objects will be
represented by some additional clusters with small weights
7. Therefore, we can approximate the background model
by the first B largest clusters:

o~
—

B
p(f‘XTa BG) ~ Z ﬁ-mN(f; Honys a?nl) @)
m=1

If the components are sorted to have descending weights
Tm We have:

b
B = argmbin (Z_lfrm > (1-— Cf)> 8)

where cy is a measure of the maximum portion of the data
that can belong to foreground objects without influencing
the background model. For example, if a new object comes
into a scene and remains static for some time it will prob-
ably generate an additional stabile cluster. Since the old
background is occluded the weight mp; of the new clus-
ter will be constantly increasing. If the object remains static
long enough, its weight becomes larger than cy and it can
be considered to be part of the background. If we look at
(4) we can conclude that the object should be static for ap-
proximately log(1 — c¢;)/log(1l — «) frames. For example
for c; = 0.1 and a = 0.001 we get 105 frames.

4. Selecting the number of components

The weight 7,,, describes how much of the data belongs
to the m-th component of the GMM. It can be regarded as
the probability that a sample comes from the m-th compo-
nent and in this way the 7,,,-s define an underlying multino-
mial distribution. Let us assume that we have ¢ data samples
and each of them belongs to one of the components of the
GMM. Let us also assume that the number of samples that

belong to the m-th component is n,, = 25:1 05,? where



ogfl)-s are defined in the previous section. The assumed
multinomial distribution for n,,-s gives likelihood function
L = H%Zl 7. The mixing weights are constrained to
sum up to one. We take this into account by introducing the
Lagrange multiplier . The Maximum Likelihood (ML) es-
M
timate follows from: % <log£ + A T — 1)) =0.
m=1

After getting rid of \ we get:

~ Nm 3
777(7?:72—20573~ €))

The estimate from ¢ samples we denoted as 7%,7? and it can
be rewritten in recursive form as a function of the estimate
7?7(7271) for t — 1 samples and the ownership offl) of the last
sample:

70 = 70D 1 1/t(of) — 7). (10)

m

If we now fix the influence of the new samples by fixing
1/t to o« = 1/T we get the update equation (4). This fixed
influence of the new samples means that we rely more on
the new samples and the contribution from the old samples
is downweighted in an exponentially decaying manner as
mentioned before.

Prior knowledge for multinomial distribution can be in-
troduced Alaly using its conjugate prior, the Dirichlet prior
P = Il 7. The coefficients c,, have a meaning-
ful interpretation. For the multinomial distribution, the c,,
presents the prior evidence (in the maximum a posteriori
(MAP) sense) for the class m - the number of samples that
belong to that class a priori. As in [12] we use negative co-
efficients c,,, = —c. Negative prior evidence means that we
will accept that the class m exists only if there is enough ev-
idence from the data for the existence of this class. This type
of prior is also related to Minimum Message Length crite-
rion that is used for selecting proper models for given data
[12]. The MAP solution that includes the mentioned prior

M
follows from 8% (logﬁ +logP +A( > 7t — 1)> =
m m:1
0, where P = 2%21 ¢ We get:

1 .
~(1) — EI (@) _
7rm - K( Om C)v (11)

i=1

Mt
where K = Y (> olt) — ¢) =t — Mc. We rewrite (11)
m=1 i=1
as:

I, —c/t
A(t) . —m T 12
A = T e (12)

. t
where 11,,, = % > 07(72) is the ML estimate from (9) and the

1
bias from the prior is introduced through ¢/t. The bias de-
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Figure 1. ROC curve for the laboratory se-
quence

creases for larger data sets (larger t). However, if a small
bias is acceptable we can keep it constant by fixing ¢/t to
cr = ¢/T with some large T'. This means that the bias will
always be the same as if it would have been for a data set
with T" samples. It is easy to show that the recursive ver-
sion of (11) with fixed ¢/t = ¢y is given by:

Q) (t-1) of (t-1) cr

A =20 1 (—— — &) -1 t————.
13)

Since we expect usually only a few components M and cp

is small we assume 1 — Mcr &~ 1. As mentioned we set 1/t

to a and get the final modified adaptive update equation

T — T + a(og;b) — ftm) — acr. (14)

This equation is used instead of (4). After each update we
need to normalize 7,,,-s so that they add up to one. We start
with GMM with one component centered on the first sam-
ple and new components are added as mentioned in the pre-
vious section. The Dirichlet prior with negative weights will
suppress the components that are not supported by the data
and we discard the component m when its weight m,,, be-
comes negative. This also ensures that the mixing weights
stay non-negative. For a chosen o = 1/T" we could require
that at least ¢ = 0.01 = 7" samples support a component and
we get cr = 0.01.

Note that direct recursive version of (11) given by:
70 = #7074t = Me) oD (@®) — 757V s not
very useful. We could start with a larger value for ¢ to avoid
negative update for small ¢ but then we cancel out the influ-
ence of the prior. This motivates the important choice we
made to fix the influence of the prior.

5. Experiments

To analyze the performance of the algorithm we used
three dynamic scenes. The sequences were manually seg-
mented to generate the ground truth. We compare the im-
proved algorithm with the original algorithm [3] with fixed
number of components M = 4. For both algorithms and for
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Figure 2. Full adaptation and processing
times

different threshold values (c;p, from (2)), we measured the
true positives - percentage of the pixels that belong to the in-
truding objects that are correctly assigned to the foreground
and the false positives - percentage of the background pix-
els that are incorrectly classified as the foreground. In fig-
ure 1 we present the receiver operating characteristic (ROC)
curve for the ’lab’ sequence. We observe slight improve-
ment in segmentation results. The same can be noticed for
the other two sequences (ROC curves not presented here).
Big improvement can be observed in reduced processing
time, figure 2. The reported processing time is for 320 x 240
images and measured on a 2GHz PC. In figure 2 we also il-
lustrate how the new algorithm adapts to the scenes. The
gray values in the images on the right side indicate the num-
ber of components per pixel. Black stands for one Gaus-
sian per pixel and a pixel is white if maximum of 4 com-
ponents is used. For example, sequence ’lab’ has a monitor
with rolling interference bars in the scene. The plant from
the scene was swaying because of the wind. We see that the
dynamic areas are modelled using more components. Con-
sequently, the processing time also depends on the complex-
ity of the scene. For the highly dynamic ’tree’ sequence [4]
the processing time is almost the same as for the original al-
gorithm [3]. Intruding objects introduce generation of new
components that are removed after some time (see ’traffic’
sequence). This also influences the processing speed.

6. Conclusions

We presented an improved GMM background subtrac-
tion scheme. The new algorithm can automatically select
the needed number of components per pixel and in this way
fully adapt to the observed scene. The processing time is re-
duced but also the segmentation is slightly improved.
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