COGNIRON V ( ", . !

FP6-IST-002020
COGNIRON

Integrated Project

Information Society Technologies Priority

D5.4.1
Report on Requirements for a
Modelling System Dealing with
Temporal Processes

Due date of deliverable: 31/03/2004
Actual submission date: 31/01/2005

Start date of project: January 1st, 2004 Duration : 48 months
Lead contractor for this deliverable: LAAS-CNRS

Revision: final
Dissemination level: PU



Executive Summary

Time is a fundamental component of the knowledge we manipulate, and use. We not only care about
objects and artifacts, their position, their shape, but also when were they at this location or this other
one, how old are they, for how long have they been in a particular state, etc. Similarly, when one has
to analyze a dynamic process (fixing dinner, walking the dog, etc), one must take time into account.
For example, if one put some water to boil, one knows that after a more or less predictable duration
(related to the size of the pane, and the quantity of water), it should be boiling. A cognitive robot will
also need such capabilities to be able to fully understand, interact with humans and other robots and
act on the environment.

In this document we study and analyze what are the time representations one can use to endow our
cognitive robot with such capabilities. By time representation, we do not only look at how should
information be “tagged” with time, but also what are the temporally related knowledge to use for
activity such as situation recognition, or action recognition.

At this stage, we mostly present here a state of the art, and point out what are the approaches which
seems to be the most promising from our point of view.

Role of Temporal Relation Modelling in Cogniron

In order to address fundamental questions of scene understanding we not only have to include ob-
ject recognition and the spatial relationships between objects but also their temporal properties. For
example: if the robot removes an object at a certain location at some time, this object will not be at
that location after that time. Furthermore, time can compensate for lost metric information due to an
abstraction process, e.g. the travel time between two topological nodes can be very useful for localiza-
tion. To model these temporal relations in a formal way various formalism have been considered. In
real world situations the information about the event (the action and consequences) will be uncertain
and subject to noise.

In this workpackage we study and develop models that are well suited to deal with temporal relations.
We have experience with various temporal models (some dealing with uncertainties) and we will
consider if they are well suited in the context of the home tour scenario.

Relation to the Key Experiments

Making use of a temporal model and a situation recognition system using a temporal chronicle would
certainly improve the various Key Experiments. As we will see in the following sections, there exists a
number of systems which could be used for that purpose. Some of these systems are available and use
techniques which have already been demonstrated on large scale applications (e.g. situation recogni-
tion with temporal chronicles). Other techniques are somewhat less mature or more complex to setup
or run on a real system, as a result, we need to further evaluate their adequacy for the COGNIRON
Key Experiments.



1 Models of Temporal Relations

A congitive robot has to deal with geometrical and topological information about its environment
(here we consider the environment to include other robots and humans present or known to the robot).
Nevertheless, such an information is usually no sufficient to be able to get the full understanding
of the current situation, and of its evolution. Indeed, events and sensory information often need to
be temporally related to be fully correlated. Observing A then B may carry a completely different
meaning than observing B then A... (e.g. if a human while giving an order to move an object point to
a location X and then to another one Y, it may mean than it is instructing the robot to take the object
from X to Y, and not from Y to X). Similarly, observing A and then B in a “given” time frame or time
window may imply a particular situation while the meaning could be quite different if the window is
smaller or larger. Thus temporal relations about objects and agents is probably as important than the
geometrical (location or position) information. Last, such observation, or analysis is bound to have
some uncertainty, either on the exact date of occurrence of a particular events (e.g. due to the sensor
uncertainty, or to communication delay), or on on the models used to process these informations (e.g.
we may have models that recongize a particular situation with a given probability).

So the designer of a cognitive robot is faced with a number of problems, with respect to temporal
representations and models.

e What kind of representation to use to “tag” or “stamp” events and data?

¢ What should be the horizon over which a particular information (and its temporal tag) should be
kept (in case it needs to be referenced later on for situation recognition). Should the information
be explicitly stored, or “remembered” in a hypothesis tree?

e How do we acquire the temporal models which are then used by the system?

e What type of processing and reasoning one want to implement: situation recognition, situation
forecasting, etc?

e What type of uncertainty management will one need for the temporal information (on the data
itself, and/or on the models)?

The issue of information storage is one which need to be adressed. For example, should a robot store
all the subsequent positions of a human present in the scene for later use? Obviously, if this is done for
every piece of information gathered by the robot, a large chunk of the memory will have to be devoted
to this function. However, there are also recognition mechanism which only hold the information
needed to confirm or infirm the current hypothesis.

The temporal representation of information is also critical. For events, usually the date of occurrence
is enough. But for temporal “relations” various format can be considered, symbolic or numerical,
discrete or continuous, exact or interval.

Various temporal models can be considered and are presented in our state of the art: temporal chron-
icles, hidden Markov models and dynamic Bayesian networks. Some are more adapted to handling
uncertainties, and provide some interesting “the model can be learned” capabilities, while others are
more dedicated to a more explicit (i.e. quantitative) temporal information handling.



2 State of the Art

If one consider the problem of modeling temporal relations to recognize situations, there is a large

body of work on this subject which has been studied in the diagnostic field, to recognize alarms, intru-

sions or in general events resulting from a temporally related events [3]. We are not quite interested in
recognizing alarms or problems, still these techniques are not limited to the diagnostic field and appear
to be somewhat applicable to our problem. After all, monitoring a situation or a process is indepen-

dent of the type of processing one wants to perform afterward (it can be diagnostic, or robot human
interaction). In any case, this field has come up with an interesting method to represent temporal
information, and to recognize situations.

2.1 Temporal Chronicles

IXTeT-Reco is a temporal chronicle recognition system. A chronicle model is a description of generic
scenario (normal or abnormal evolution) to be surveyed [11, 16]. It is represented as a set of events
and a set of temporal constraints, between these events and with respect to the context. A chronicle
model may also specify events to be generated and actions to be triggered as a result of the chronicle
occurrence. Such an action or event could be passed to another component of the architecture in charge
of processing/executing it. Deduced events can also in turn be taken as input by other chronicles, hence
enabling a recursive chaining.

On-line, the chronicle recognition system receives as input a stream of time-stamped instanciated
events. A sensory stimulus, once detected by a signal processing tool, may become an event. If
some observed events match the model events of a chronicle, and if their occurrence dates meet the
specified constraints, then an instance of this chronicle occurs. Its recognition may generate in turn
new events, it can permit the focus of attention enabling the detection of forthcoming events, or it
can trigger alarms, messages, data logging or other actions. This recognition system recognizes all
instances of occurring chronicles, on the fly, as they develop. It does not account for all observed
events, but only for those matching available models. The system generates as output deduced events
and triggered actions associated to recognized chronicle models. It is mainly a temporal reasoning
system. It is predictive since it predicts forthcoming events that are relevant to partial instances of
chronicles currently hypothesized as taking place; it focuses on them and it maintains their temporal
windows of relevance.

As aresult, such approach focus on the recognition process, and does not “store” explicitly any data for
later retrieval nor analysis. Of course, this is done at a price (maintaining all the possible hypothesis
under consideration). The advantage of such approach over a basic temporal pattern matching of an
event database obviously depend of the number of events, the number of chronicles and the horizon
over which each of them may perform a full recognition. Note that the real-time properties of the
recognition are well defined and predictable.

IXTeT-reco has been extended in [9] to deal with optional events and also to allow different politics of
chronicle recognition (greedy or lazy).

The CRS [26] system, which was developed subsequently to IxTeT-reco is very similar.

2.2 Temporal Chronicles with Uncertainties

The WITAS project [17] has a chronicle recognition system based on IxTeT-reco. Still, in [9] the au-
thor introduces an extension of this system to handle uncertainties, which he developed while working
on the WITAS project during a visit at Lirdping University.



The extension itself was motivated by two problems:

e The confidence one has in a particular sensor data can vary (the quality of the images, the
accuracy of the sensor itself, etc).

e The processing one apply to these data can itself lead to deduction with various confidence.
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Figure 1: Example of disappearing data (from [9]).

Thus, the author decided to relax one of IxTeT-reco hypothesis (the one which assume that all sen-
sory data are “certain” and always present). He studied various formalism to handle this (Bayesian
Network, Belief Theory and Possibility Theory).

The resulting system was applied to situation recognition such as recognizing the maneuver of a
passing car while it was temporary occulted (by a bridge or an overpass). An interesting property
of the system is that most of the confidence computation can be done off line while compiling the
recognition model, thus preserving the real-time properties of the recognition itself.

2.3 Hidden Markov Models and Dynamic Bayesian Networks

In many real life situations, we are faced with the task of inducing the dynamics of a complex stochas-
tic process from limited observations about its state over time. Until now Hidden Markov Models
(HMMs)[23] have played the largest role as a representation for learning models of stochastic pro-
cesses. Recently, however, there has been increasing use of more structured models of stochastic
processes, such as factorial HMMs [15] or Dynamic Bayesian Networks (DBNs)[5]. Such structured
decomposed representations allow complex processes over a large number of states to be encoded
using a much smaller number of parameters, thereby allowing better generalization from limited
data [15, 14, 28]. Furthermore, the natural structure of such processes makes it easier for a human
expert to incorporate prior knowledge about the domain structure into the model, thereby improving

its inductive bias.

Typically, consider an intelligent agent whose task is to monitor a complex dynamic system such as
the movements of humans in an environment. Tracking the state of such systems is a difficult task:
their dynamics are noisy and unpredictable, and their state is only partially observable. Stochastic
processes provide a coherent framework for modelling such systems. In many cases, the state of the
system is prepresented using a set of state variables, where individual states are assignments of values
to these variables. DBNs allow complex systems to be represented compactly by exploiting the fact



chronicle Overtake () () {
timepoint before, t0, t1, t2, after;
variable ?v, 2dir;

?v in VEHICLES;

?2dir in DIRECTIONS;

hold (T_DIRECTION() : 2dir, (before, t0));

hold (DIRECTION(?v) : 2dir, (before, t0));

hold (POSITION(?v, ?dir) : in_front, (before, t0));
hold (T_LANE() : right, (before, t0));

hold (LANE() : right, (before, t0));

optional event (T_LIGHT() : (off, right), t0);
event (T_LANE() : (right, left), t1);

hold (POSITION(?v, ?dir) : behind, (t2, after));

t0 $>$ before;

(t1 - t0) in [MIN_CHANGE_LANE, MAX_CHANGE_LANE];
(t2 - t1) in [MIN_OVERTAKE, MAX_OVERTAKE];

after $>$ t2;

when recognized { call report_overtake(?v, after);}

}

Figure 2: Passing scenario

that each variable typically interacts only with few others. Learning a DBN from observations is
based on the well-known Expectation-Maximization algorithm [8, 24], extended recently to learn the
structure of the network itself [2, 13]. Once the model is learned, efficient approximate inference is
done with the particle filtering family of algorithms, as in [18].

Still, HMM and DBN have some difficulties to represent time “values”. For example, one need to
fold in the model, time related properties (such as the speed, or the time since a particular event) to
properly handle recognition of situations with a variable possible state recognition depending on the
elapsed time between the occurence of two similar events.

2.4 Other Approaches

Several areas of research investigate problems close to ours. In plan recognition for example, one is
interested in recognizing that a sequence of observed actions matches a previously described plan. In
that area, a top-down approach guided by the plan to be recognized, is proposed in [25]; in addition
to several restrictive assumptions (mainly the synchronization between observations and action occur-
rences) this work, as most others in plan recognition, does not take into account explicit temporal and
real-time constraints.

Time is explicit in the event calculus of Kowalski and Sergot. This representation, mainly devel-
oped as a question-answering system for temporal data-bases [19], has been extended for planning or
scheduling by several authors (e.g. [1]), does not address the recognition issue, while [7] does). A
variant of it based on the interval calculus [20] is closer to our problem, but with a more restricted
representation and without algorithmic concerns. In diagnosis, several authors consider dynamic sys-



tems; among which [4] and [22] explore available knowledge on temporal constraints between states
(called modes) mainly as a way to focus an abductive diagnosis. On-line recognition is not their main
focus, they do not provide complexity analysis, nor performance results.

The approach presented in [21] use finite state automaton to perform recognition, but has some limit
to properly handle quantitative temporal information.

In [27], the authors a scenario recognition system for Video Interpretation. The temporal aspect of the
recognition is inspired by the one presented in [11, 16], but applied to information extracted from a
video stream (See Figure 3 for an example).

Scenario(Attack,
Characters((cashier : Person), (robber : Person))
SubScenarios(
(cas_at_pos, inside_zone, cashier, "Back_Counter")
(rob_enters,changes_zone,robber, "Entrance_zone","Infront_Counter")
(cas_at_safe, inside_zone, cashier, "Safe")
(rob_at_safe, inside_zone, robber, "Safe") )
Constraints((rob_enters during cas_at_pos)
(rob_enters before cas_at safe)
(cas_at_pos before cas_at_safe)
(rob_enters before rob_at safe)
(rob_at_safe during cas_at_safe) ) )

Figure 3: Example of a bank attack sceanrio (from [27])

3 Proposed approach

The temporal chronicle representations as well as the situation recognition algorithm seems to be the
most appropriate approach to the type of problems we want to address in COGNIRON. In this section,
we further present this approach and the mechanism used to efficiently recognize a situation.

3.1 Knowledge Representation For Chronicles

The knowledge representation relies on temporally qualified domain attributes. One consider time
as linearly ordered discrete set of instants, whose resolution is sufficient for the dynamics of the
environment. One can handle the usual symbolic constraints of the time-point algebra (i.e. before,
equal, after and their disjunctions), as well as numerical constraints. The later are expressed as pairs of
real numberse2 — el) = [[—, I+] corresponding to lower bounds and upper bounds on the temporal
distance between two pointd ande2. For complexity reasons, one do not allow disjunctions of
numerical constraints, since the constraint satisfaction problem becomes NP-Complete [6].

The representation use a propositionnal reified logic formalism, where a set of multi-valued domain
attributes (fluents) are temporally qualified by two predicatesld andevent The persistence of

the valuev of a domain attribute during the intervalt, ¢'[ is expressed by the assertinld(p :

v, (t,t')). An eventis an instantaneous change at timef the value (fromw1 to v2) of a domain
attributeevent(p : (vl,v2),t,)

The representation allows multi-valued attributes with variable arguments, each instance of the argu-
ments corresponds to an independent fluent (&:4:) givesp(a), p(b)...).



A chronicle model is a conjunction of event predicates and constraints. It may also involve the de-
scription of some context that is required to hold over some interval independently of when the corre-
sponding fluents became true. An example of a chronicle followas:

chronicle Situation
{ timepoint t1,t2,t3,t4,t5,t6;

/l- forthcoming events and context assertion
event (ATTRA:(stable, increasing),tl);
event (ATTRB:(stable, increasing),t2);
event (ATTRC:(stable, increasing),t3);
event (ATTRD:(stable, increasing),t4);
event (ATTRD:(stable, increasing),t5);
event (ATTRD:(increasing, decreasing),t6);
hold (ATTRE:None, (i1, t4));

/l- temporal constraints
(t2-t1) in [1.00,3.00];

(t3-t2) in [0.00,1.00]; (t4-t3) in [0.00,1.00];
(t5-t2) in [0.00,1.00]; (t6-t5) in [0.00,2.00];}

The system receives and processes only events. The chronicle recognition is complete as long as
the observed event stream is complete, i.e. any change of the value of a domain attribute produces
an observed event. This hypothesis enables to manage context assertions quite naturally through
occurrences and non-occurrences of events. To process assettign: v, (¢,t')), the system checks

that there has been an evént (v',v),t"”) witht” < ¢t and such that no evept: (v, v”) occurs within

[t”,¢'[. To initialize the system, a set of events corresponding to the initial state of the world must be
sent with an occurrence date equals-tso. Consequently a chronicle model corresponds to a network

of temporal constraints where each node is an event. The network for the previous chronicle is the one
presented on Figure 4 with the condition that no e’ RE(NON E, 7t) occurs duringt'1, t4].
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Figure 4: Chronicle Network.

3.2 On-Line Chronicle Recognition

The chronicle recognition system has to detect, on the fly, any subset of the stream of observed events
which matches the set of model events in a chronicle and meets all the constraints and context asser-
tions. A match between some observed events with a subset of model events is a partial instance of a
chronicle. A complete match requires the observation of all model évetitsvever, not all observed

events have to be accounted for: an event is meaningless unless it happens within a context and a
sequence of events matching a chronicle

1[9] has relaxed this limitation with optional events.



Let us illustrate the recognition process with a simple scenario corresponding to the chronicle model
given above: initiallyATTRE is set to None, theATTRA increases at time 10’, thdTTRB
increase at 12’ and so on. On receiving@AT RA increase event at 10, the system detects a possible
instance of this chronicle, it predicts what are the expected events for this instance and what should be
their respective temporal windows compatible with this partial instance (See top figure 5 on the right).
Reception of an event oATT RB increase at 12’ is propagated to the windows constraining the re-
maining events (bottom figure). If, on some alternate scenario, after receiving these two events, either
ATTRC or ATTRD events do not occur at time 13’, orA7T RFE changes its value before occur-
rence time ofATT RD event, then the corresponding instance will not meet the specified constraints
and will be disregarded.

A compilation stage is useful for testing the consistency of constraints in a chronicle model and for
coding it into data structures efficient for the recognition process. It mainly consists into propagating
all the constraints into a complete and minimal network. At preprocessing time, propagations are local
to each chronicle model. For each chronicle model, we propagate constraints with an incremental path
consistency algorithm. The result of this algorithm is (for each chronicle model) the least constrained
complete graph equivalent to the user constraints, or a subset of inconsistent constraints if any.
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Figure 5: Matching Events and Propagating Windows.

An observed event may trigger a hypothesis of a chronicle instance. Such a partial instance corre-
sponds to a network, grounded in time, predicting expected events for this hypothesis. Events that



may trigger a recognition hypothesis are those at the root nodes of the model network as well as at
any further nodes compatible with the bounds on detection délayfsthe predecessor nodes and the
constraints.

The recognition process relies on a complete forecasting of expected events predicted by chronicle
hypothesis. We define an interval, called window of relevance D(e), which contains all possible
occurrence dates for a predicted evemf a partial instance, in order fore to be consistent with
constraints and known dates of observed events. ifrurthermore, for each chronicle instance, we
maintain some time bounds. The deadline of an instahce the latest date for the nearest non-
occurred event. Similarly, we compute the holdline of an instance which is the latest date for ensuring
that the nearest assertion holds, i.e. when we are sure that an occurrence of a forbidden event cannot
violate the assertion (for the previous example, at time 10’ deadline=16’ and a holdline=15’). We can
compute the recognition interval for each chronicle instance: the user can know when a recognition is
expected and which events will be necessary to achieve it. This is used for performing some actions
such as a focus of attention on what is expected or what needs to be avoided.

A hypothesis of chronicle instance may progress in two ways: (i) a new event may be detected, it
can be either integrated into the instance and make the remaining predictions more precises, or it
may violate a constraint for an assertion and make the corresponding hypothesis invalid; or (ii) time
passes without nothing happening and, perhaps, may make some deadline violated or some assertions
constraints obsolete. The system manages its own internal clock by receiving clock updates. Let now
denoted the value of this clock. When an observed ewanatches of model evemryf,, we always

have the reception datg¢e) = now, and either

e d(e) € D(ex) : e doesn’'t meet the temporal constraints of the expected eyeoftsS,
e d(e) > D(ex) : D(eg) is reduced to the single poitite).

More generally, if the window of relevance of some expected ewgrih S has been further con-
strained (that isD(e) reduced), we are sure that this constraint remains consistent with what is
already known. We need however to propagate the reduction to other expected events, which in turn
are further constrained.

propagate(eg, S)
for all forthcoming eveng; # e, of S
D(e;) < D(e;) N[D(ex) + I(e; — ex)]

This produces a new set of non-empty and considt¥iat). We never need to verify the consistency

of events that fall into their windows of relevance. We just need to propagate further their new value
of D(e).

When the system updates its internal clock, this new value of now can reduce some windows of
relevanceD (e;) and, in this case, we need to propagate it over all expected events of an inStance
(by D(e;) < D(ei)N([t, +oo[—D(e;))). Thisinstance remains consistent as long a®édl;) remain

non empty.

Notice that a clock update may not require propagation: it is necessary to propagate a date only
when a time bound is reached (before that we are sure that constraints in a chronicle instance remain
consistent). Time bounds enable an efficient pruning.

Checking hold assertions requires a special care. Let us consider a chronicle igsidrick requires

that an event should not occur durindel, e2]. If e occurs beforeD(el) or after D(e2), S isn't



concerned. Otherwise, there are two basic cases (depending on the overlap ietalgemdD (e2))

and each one leads to a processing according to the localization of the occurrence=date of

Before propagating a second observation into a hypothesis, the original chronicle instance must be
duplicated and only the copy is updated. For each chronicle model, the system manages a tree of
hypotheses of current instances. When a hypothesis of chronicle instance is completed or killed
(because of a violated constraint), it is removed from this tree. Duplication is needed to warranty the
recognition of a chronicle as often as it may arise, even if its instances are temporally overlapping.

We have briefly presented the temporal chronicle representation and the recognition algorithm used in
the IXTeT-reco system. This work as inspired some interesting extensions (for Witas and with CRS)
and appear to be one of the most promising one in this domain.

4 Future Work

In the current stage we plan to further study the integration of a temporal chronicle system in the
COGNIRON architecture. This could either be CRS [26] or IXTeT-Reco [10]. The two systems are
very close (they have been developed by the same person), still there are some pros and cons which
we need to consider to make a final choice.

e IXTeT-reco has been somewhat extended to handle uncertainties (see Section 2.2).

e IXTeT-reco has been integrated in the LAAS architecture and connected to the procedural rea-
soning system (PRS, now Open-PRS) we use as a supervision and procedural executive system.

e CRS was rewritten from scratch, and may have a cleaner design and may offer a better support.

Another aspect we may pursue is the use of HMM and DBN to recognize particular interactions
with humans and actions from a human or a from another robot. One of the nice property of these
approaches is that they can rely on learned model, and deal with uncertainty. We already have con-
ducted some experiments to learn an HMM of a robot “complex” navigation actions [12], and plan to
extend this study to learn human “intentions”.
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