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Executive Summary 
 
Learning and acquiring task knowledge represents a major property of a cognitive robot companion 
and in the Research Activity (RA) 4 of the COGNIRON project the scientific challenges of skill and 
task learning are addressed. This report describes the work conducted by the University of Karlsruhe 
within the WP4.3 during the fist phase of the project. The aim of this workpackage was to set up 
scientific base for learning complex tasks and especially to investigate the role of background 
knowledge for the leaning process. The implementation of the work has been carried out within the 
framework of the Programming by Demonstration System developed at the UKA.  
 
The chosen approach within this work package is investigating how learning and knowledge 
acquisition based on very few or even only one (positive) example can be used for task learning. Like 
humans a robot is supposed to learn or to understand new facts by watching or interacting with 
humans intuitively and this means that the learning process must be incremental and avoid multiple 
examples of the same task. The success of such learning methods depends on the prior knowledge and 
on the reusability of learnt or acquired knowledge of the system. In order to reduce the problem 
complexity the work done in the first phase of the project focuses on manipulation tasks only. For the 
household domain and especially constrained on manipulation a general model for task decomposition 
according to a classification of manipulation task was created and implemented. Based on this, 
methods for extracting, classifying and analysing information from a human demonstration were 
implemented and evaluated. The applied learning and knowledge acquisition strategies are derived 
from the state of the art and the knowledge analysis, which is done by humans in order to understand 
and reason about manipulation tasks in household environments.  
 
 
Role of “Report on selected categorizations of innate skills, skill 
representation and implementation. Evaluation of machine 
learning techniques for enabling one-shot learning” in Cogniron  
 
As stated above, learning and knowledge acquisition are crucial for a robot companion, who is 
supposed to coexist with humans. The study of learning tasks from humans by watching them and 
interacting with them, without the need of special training sets is one step towards scalable learning 
systems and lifelong learning. Therefore the work carried out so far in WP4.3 builds a strong base for 
further investigating the learning of and reasoning over complex task in a household environment. The 
used and acquired knowledge base on complex task knowledge is strongly liked to the work done in 
the WP4.1 (“Sub-goals extraction and metrics of imitation performance”) and WP4.2 
(“Corresponding mapping across dissimilar bodies”). The methods for single-shot learning of 
complex tasks implemented in WP4.3 (“Prior Knowledge and data representation for Imitation 
learning; Algorithms for one-shot learning”) employ results from WP4.1 to identify the key points and 
task goals of a demonstration sequence that guide the later interpretation with the methods described 
in this report. Further, for transferring learned or acquired problem solving strategies though different 
embodiments (investigated by WP4.2) special knowledge has to be extracted and integrated in the task 
description.  
 
Further the work has a great impact for the research done in RA 6 (“Intentionality and Initiative”) 
since acquired or learned task knowledge has to be executed through the robot according to the 
adequate situation and context. Therefore the task representation is done in close collaboration with 
RA6 as well as the required specification of information for their execution.  
 
In order to learn intuitively from a human user demonstrating a task he or she has to be observed and 
his or her activities have to be interpreted in a way suitable for extracting task knowledge. Hence the 
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results from RA2 (“Detection and understanding of human activity”) are highly relevant for and 
integrated in the work of WP4.3.  
 

Relation to the Key Experiments 
 
The results of this work package will be integrated in the KE 3.3 “Skill and Task Learning” and 
especially will be included in the Cogniron Function CF-LCT (Learning complex task descriptions 
from elementary operations).  
For KE 3 this work package provides the robot the abilities to learn and reason over the 
reestablishment of spatial relations between objects as well as their functional rolls with a certain task 
as they were demonstrated by a human teacher in a training session. The results will be demonstrated 
in the second script of KE 3. This demonstration will consist of observing a user laying the table 
respectively carrying out context dependent “fetch and carry tasks” in the context of serving guests. 
The results obtained from work on learning object features and descriptions will be integrated  to learn 
completely new tasks.  
The results from WP4.3 are directly contributing to CF-LCT by rooting the functionality in scientific 
insights. They provide methods for modelling complex tasks that appear in Key Experiment 3, Script 
2. The developed framework for learning complex task descriptions is employed in CF-LCT to model, 
perceive and record task demonstrations and tasks originating from the household domain. This 
enables the Robot Companion to adapt in a flexible and intuitive way to the individual and 
diversifying environs and needs of the robot’s user.  
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1  Report on selected categorizations of innate skills, skill representation 
and implementation. Evaluation of machine learning techniques for 
enabling one-shot learning. 
 

Introduction 
 
During the last couple of years, Human-Centered Robotics (HCR) became a major trend in the 
robotics community. One crucial point in HCR is to build extensible systems that adapt to unstructured 
situations and new tasks that the human (user) comes up with. This can be achieved by equipping 
robots with learning capabilities that facilitate the transformation of situational and task knowledge a 
user has into procedural knowledge utilizable by a robot companion. Humans usually do not have the 
patience to repeat a single task demonstration several hundred or even more times to provide inductive 
learning systems with a sufficient amount of training examples. Therefore different approaches that 
content with only a few or even a single positive example have to be taken into account for human-
centered learning.  
 
A human performance of any complex task to be reproduced by a Robot Companion is based on 
several innate skills that are the syntactical foundation of every composite task. The objectives of WP 
4.3 in the first project phase were to identify those elementary skills and appropriate representations 
for them as well as models for the decomposition of overall tasks into sets of applied skills. 
Furthermore, work on the background knowledge mandatory for describing the semantics of each 
skill, like its applicability constraints and the achieved results of its application, is required. Last, 
existing paradigms of machine learning have been analysed with respect to their appropriateness for 
learning combinations of skills from sequential demonstrations. This assay attaches special importance 
to the amount of training data and the background knowledge base required for learning a task. A 
Robot Companion is much more likely to be accepted by the user if it can learn complex tasks from 
very few or even a single task demonstration (one-shot learning). 
 
This document starts with the presentation of different learning paradigms and their appropriateness 
for one shot learning followed by a classification of knowledge which can be used for these learning 
strategies. Focusing on manipulation tasks a general hierarchical model and a classification of 
manipulation tasks is discussed and it is pointed out that the hierarchical representation of tasks 
improves the explicability and the scalability of the learning process. Further the role of basic (innate) 
skills representing the lowest level (hardware abstraction layer) of the hierarchical task description 
during the knowledge acquisition process and the execution of task is outlined. Finally, the task 
representation, the learning strategy and a short example of the first implementation is shown. 
 

State of the Art 
 
Several programming systems and approaches based on human demonstrations have been proposed 
during the past years. Many of them address special problems or a special subset of objects only. An 
overview and classification of the approaches can be found in [5] [6]. Basis for the mapping of a 
demonstration to a robot system are the task representation and task analysis. Often, the analysis of a 
demonstration takes place observing the changes in the scene, described by using relational 
expressions or contact relations [7] [8]. 
 
Issues for learning to map action sequences to dissimilar agents have been investigated by [9]. Here, 
the agent learns an explicit correspondence between his own possible actions and the actions 
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performed by a demonstrator agent by imitation. In [10] the authors concentrate on the role of 
interaction during task learning. They use multiple demonstrations to teach a single task. After 
generalization they use the teacher's feedback to refine the task knowledge. 
 
To generalize a single demonstration mainly explanation based methods are used [11] [12]. They 
allow for an adequate generalization taken from only one example (One-Shot-Learning).  
 
A generalized task description that is to be executed must be mapped onto an executable robot 
program. Several robot task representations have been proposed in the past. They can be roughly 
classified into programming languages including control structures and declarative sequence- or tree-
like descriptions of the task. An overview can be found in [13]. 
 

Learning paradigms and their appropriateness to one-shot learning 
 
Many learning systems, especially ones that utilize inductive or statistical approaches, require a large 
amount of training data in order to generalize the demonstrated examples as far as possible. This 
generalization allows for an extension to unknown instances and application to problems not contained 
in the training set. Such systems lack the ability to significantly learn from a few training instances and 
transfer the knowledge acquired during this process to different new instances not contained in the 
training samples. In contrast to this, learning humans clearly demonstrate their capability to learn from 
single demonstrations and tend to expect that from a robot companion, too. One possible explanation 
for the superiority of human learning is that they exploit earlier experiences and extensively employ 
prior knowledge. From this considerations follows, that in addition to the established learning 
approaches the influence of methods incorporating prior knowledge aiming towards one-shot learning 
has to be analyzed and evaluated.  
 
According to [1] [2] four major paradigms of machine learning can be identified: Inductive learning 
methods build a description of the entity to be learnt which covers or describes all positive training 
instances and none of the counterexamples. Analytic methods utilize solved problems (the examples) 
to aid deductive reasoning on a formalized or axiomatic domain theory in order to improve system 
performance on certain fields rather than learning completely new ones. These two approaches form 
the category of symbolic machine learning, as opposed to subsymbolic machine learning. The latter 
contains connectionist methods, which view learning as the problem of assigning and adjusting 
weights to elements of a network structure that guides distributed information processing, affecting the 
outcome in order to converge to the target function. Last, there is the genetic paradigm that relies on 
parallel mutation, evaluation and selection of possible target concepts to ensure their improvement.  
 
In order to evaluate these approaches with regard to one-shot task learning in household scenarios the 
prerequisites and requirements of the occurring learning jobs have to be further specified. In the 
following, this documents deals with learning of tasks in the household domain. These tasks include 
fetch-and-carry operations, transports of objects, operating domestic appliances, usage of tools and 
optimizing manipulations like handing over objects from one hand to the other. A system for one-shot 
task learning should be capable of observing the human user performing a task and detecting and 
segmenting the single actions that form the demonstrated task. Further on it requires the ability to 
interpret the demonstration with regard to the influence it has on the environment and abstract it as far 
as possible to different environments and similar tasks. After the learning process is complete, the task 
is ready to be mapped on specific hardware architecture and can be executed by a robot in the 
environment. The data representation that describes a task should aid this process by providing the 
learning system all necessary sensorial information in an appropriate manner and has to be flexible 
enough to model all possible actions stated above in a way that allows to describe them as generally as 
possible.  
 



COGNIRON                                                                                               Deliverable D.4.3.1 
FP6-IST-002020                                                                                          31.01.05  
  Revision final 
 

Page 6 of 17                         
 
 

Further restrictions arise from the application domain: Out of safety reasons it is mandatory to have 
methods to verify the correctness of learned data. Learning methods should be performed online in 
order to enable user-friendly interfaces. The user should interact with the learning system in a way that 
allows him to monitor the hypothesis the system makes and correct them if necessary. The task 
representation and the learning algorithms should be independent of the specific robot hardware 
because this allows executing learned tasks on different hardware platforms. Learning should be 
incremental and not batch-style, giving the user the possibility to add new tasks whenever they are 
needed and not in an overlong and tedious initial teaching phase.  
 
In [3] it is suggested that symbolic learning approaches could be a little more suitable for those kinds 
of learning problems than subsymbolic ones, especially connectionist paradigms. This statement can 
be sustained by the fact that many symbolic learning approaches seem to outperform subsymbolic 
paradigms in terms of classification correctness and learning rate given relatively small data sets. In 
the earlier defined domain of task learning, these training sets can contain very few (less than five) 
training samples or even only a single task demonstration. So, symbolic paradigms seem to be more 
promising in this specific domain. Additionally the learned hypothesis a symbolic learning algorithm 
outputs are usually easier to interpret, especially by human. This is likely to lead to a more effective 
and easier verification of the learned results. Therefore safety issues can be tackled in a direct and 
more reliable manner. Last, many symbolic learning techniques do not require batch processing, which 
means they feature incremental learning. This enables the system to learn a task even from a single 
user demonstration and later refine the learned knowledge when the user has the time and feels like 
providing another one ore more demonstration.  
 

Knowledge base for complex tasks 
 
As stated above learning from few examples is strongly related to an adequate associated knowledge 
base, which covers the domain knowledge. The management of the knowledge base should support the 
integration of new acquired knowledge, so that it can be used for further learning cycles. 
 
The following classification of knowledge can be made:  

- Environmental knowledge (objects, scene model etc.)  
For understanding a given demonstration of a task a representation of the environment 
including descriptions and features of parts of the environments like objects is necessary. The 
environmental description should include a scene and object model as well as methods for 
detecting and specifying changes in it.  
 
- Functional knowledge (roles of objects, functional description of tools etc) 
Looking at manipulation tasks the goal extraction of a demonstrated action is strongly related 
to the functional features of the manipulated object. For tool handling tasks in general the role 
of the tool and the type of interaction with the manipulated object is sufficient to determine the 
functional goal of the demonstration. 
 
- Temporal / spatial knowledge (move types, synchronisation etc)  
The description and detection of environmental changes over the time is essential for 
understanding the movements during a task execution. Herby the classification of move types 
in general and of grasps in the case of manipulation tasks is one feasible way for describing a 
and detecting movements. For understanding complex tasks which are executed bimanually a 
synchronisation of the hand movements is required and thus methods for finding key points 
for synchronisation have to be integrated. 
 
- Commonsense knowledge (physics, gravity force, stability criteria etc.)  
For improving the understanding of a demonstrated task commonsense knowledge like 
physical constrains can be integrated. Based on these, automatic sensor data correction 
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methods can be applied in order to increase the reliability and robustness of learning process. 
Furthermore out of this knowledge plausibility criteria can be defined in order to increase the 
quality of the analysis and interpretation process of an observed task.  
 
- Special task knowledge (relevant / special features, criteria etc.)  
Apart from general knowledge presented above, special knowledge, which is valid for only 
one or a few peculiar tasks, can be necessary in some cases for goal detection of an observed 
task. This kind of knowledge is very hard specify and cased based reasoning combined with 
methods used in expert systems seam feasible for acquiring and exploiting it. 
 

Models of manipulation tasks for household domains 
 
In the framework of this work package manipulation tasks are defined as tasks during which an 
interaction between a robot gripper or a human hand and the environment respectively an object is 
performed. Further this interaction is modelled as a grasp, whereas touching an object i.e. while 
pushing a button denotes a specific (degenerated) grasp. This simplification enables a consistent 
modelling of manipulation tasks without restrictions. 
 
Manipulation task performed 
intuitively by one human using both 
hands can be classified according 
the effects they have in the 
environment during and after the 
manipulation as follows:  

1. Transport actions. 
2. Device handling  
3. Tool handling 

 
First, there are transport operations 
like pick & place transports or fetch 
& carry tasks, where the focus lays 
on the transport of one or more 
objects (see Fig. 1). Hereby the 
Cartesian position or more general 
the spatial information over time 
builds the characteristic description 
parameter. Transport actions are a 
part of almost all manipulation 
tasks. Second, device handling like 
opening a drawer or operating the 
microwave oven are forming a other 
class of tasks, where in contrast to 
the first one the internal state of 
objects is manipulated. Last, tool handling actions like screwing or pouring in a glass of water are 
building the most complex manipulation class. In contrast to the other two classes, where the 
manipulation is performed by the human or robotic hand, here the manipulation is performed 
indirectly by means of a tool, which is manipulated directly. Therefore, the main parameter for 
characterizing this class is the interaction between objects during the manipulation.  
 
Modelling the distinguished manipulation classes requires a hierarchical approach, in order to increase 
both the flexibility and the saleability of task representation. Further a hierarchical representation is 
closer to the way humans would decompose a task and therefore supports the exchange of information 
between the robot companion and humans. The lowest level of the task model is build by a sequence 

Fig. 1 : Manipulation Task Classes and their Relevant Effects.
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of primitives called elementary operators (EO’s). The EO’s are denoting basic (innate) skills, which 
are characterized by a tight sensory motor coupling. Examples of elementary operation are move types 
or patterns like linear of spline moves or pouring actions.  

 
The basic assumption made is that every sample from any manipulation class described above consists 
of at least a grasp and an ungrasp action. Pushing an object or touching a button during the operation 
of domestic devices can easily be mapped on grap / ungrasp actions. When an object is grasped, this 
constitutes a pick operation that consists of three parts: an approach movement, the actual grasping 
and a depart movement (see Fig. 2). Each of these sub-parts consists of an sequence of elementary 
operators. The place operations are modelled analogously. 
 
In between a pick and place operation, depending on the manipulation class, several basic 
manipulation operations can be placed (Fig. 3). E.g. a demonstration of the task ”‘puring a glass of 
water”’ consists the basic operations: ”‘pick a bottle”’ ”‘transport the bottle”’, ”‘pure in”’, ”‘transport 
the bottle”’ and ”‘place the bottle”’. A sequence of basic manipulation operations starting with a pick 
and ending with a place is abstracted to a manipulation segment. 

The level of manipulation segments denotes a new abstraction level on closed sub tasks of 
manipulation. In this context closed means that, a manipulation segment ensures that both hands are 
free and that the environmental state is stable. Furthermore the synchronization of EO’s for left and 
right hands are included in the manipulation segments. Pre and post conditions describing the state of 
the environment at the beginning and at the end of a manipulation segment are sufficient for their 
instantiation. The conditions are propagated from the EO level to the manipulation segmentation level 
and are computed from the environmental changes during the manipulation. In parallel to the 

Fig. 2 : Hierarchical Model of a Pick Operation 

Fig. 3 : Representation of Manipulation Segments 
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propagation of the conditions a generalization in terms of positions and object types and features is 
done.  
 
 

Innate skills for manipulation tasks 
 
Innate skills denote a set of predefined skills of the robot serving for both: the execution of 
manipulations and the learning of new tasks. Hereby the requirements and the instances of the two 
peculiarities differ depending on the dissimilarity between the embodiment of the robot and humans. 
According to the models presented in the last section, the EO’s consisting of basic grasp and move 
types could be the minimum set of innate skills for manipulation tasks. Never the less for interpreting 
human demonstrations and in particular for the segmentation of the recorded sensory data of the 
demonstrated task more information than move and grasp types is needed. Table 1 shows a selection 
of the main parameters, which are needed for a robust segmentation. However as stated above the 
more information out of the background knowledge is integrated in the system the more reliable 
results can be achieved. 
 
  

Basic Skill  Parameter 
Grasp: Hand: 
        Static      TCP velocity, joint angles 
        dynamic      +forces 
Move types TCP trajectory analysis 
Device handling :  +Object model (Type) 
     Open doors drawers      Move-axis, handle, state 
     Push/rotation buttons      Ditto 
Tool handling: +Functional role 
     Screwing      ”screw-able” 
     Pouring      ”pour in / out” 

Table 1 : Parameters for Basic Skills 

 
The execution of complex tasks means the sequential execution of innate skills respectively learned 
skills. Generally, all manipulation tasks can be described with a set of move and grasp types, but than 
there is a need for a high amount of control parameters for triggering the single skills and hence the 
reliability of the execution is limited. Therefore, especially for tool handling tasks, it might be 
appropriate to uses some high level skills. For example, the task “pouring a glass of water” can be 
described by only grasp and move types, but in this case the loop of the pouring process must be 
controlled by the task description. Since pouring fluids is a common task in household domains it is 
appropriate to implement a special innate skill for it. This will incorporate the pouring loop and will be 
parameterized with the two objects (the glass and the bottle) and the desired fluid level. 
 
Due to the different embodiments the execution of a complex task learned form humans can not 
necessary be exactly performed like humans would do. But the effect of the task in the environment 
has to be achieved. The abstract representation of tasks should incorporate as much as possible 
information for enabling the mapping between embodiments. Further the aim of the work of this work 
package is to find a general abstract robot invariant task description, which does not depend on a 
certain embodiment of a robot.   
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Applied learning and knowledge acquisition strategies 
 
In order to build the data structures described in the preceding chapter from a user demonstration 
several steps using different learning and knowledge acquisition methods are applied in order to build 
the hierarchical task representation in a bottom-up strategy. On the lowest level, the sensor abstraction 
layer, at every timeframe the sensor data is recorded and preprocessed. Classifiers are applied that 
transform the subsymbolic sensor values into symbolic information, according to the elementary 
operators. On later stages, this sequence of symbols is analytically transformed, applying syntactical 
and semantically rules, to form a generalized task description that encodes an interpretation of the 
learned task. The single computation steps are further explained in this section. 
 
In a first step the static grasps are classified according to the hierarchy proposed by Cutkosky [4] and 
the dynamic grasps according to the classification proposed by Zöllner [14]. For this Neuronal 
Networks and the Support Vector Machines were set up and trained. The classification of the correct 
grasp type enables the user to give hints to a robot in an execution environment in order to ease the 
instantiation of a learned task. The moving operations in the user demonstrations that are located 
between the grasp and release operations have to be fragmented into motion segments that directly 
correspond to basic movement types a robot can execute. The movement types used in the system are 
linear, point-to-point and spline moves. Rule sets based on the geometrical features of the trajectories 
were used to split the whole trajectory into pieces and classify these pieces according to the movement 
primitives.  
 
Grasp classification and the fragmentation of movement primitives allows the transition from sub-
symbolic sensory data to semantic symbols and features that are applicable to task-oriented reasoning.  
At this stage, a task <T> is represented by a sequence of elementary operators <EOi>: 
 
< T >=< EO1 >< EO2 >< EO3 > ...< EOn >  
 
Starting from this symbolic information the hierarchic structure of the task tree is built. 
 
In the next step the trajectory segments are accumulated to approach, disapproach and basic operators. 
In the following only the class of transport tasks is considered, were the basic operators are 
exclusively transport movements. For this, the contexts of a single movement primitive are analysed 
and at the points where it changes so called “context-switches” are introduced. Context-switches mark 
a transition between approach, depart or transport movements. They are determined using a metric on 
the distance to the grasp and ungrasp points combined with the velocity of the hand TCP and the hand 
pose. Once these context switches are established, the basic movement primitives are chained together 
to form the approach, depart and transport trajectories. The resulting task description is a sequence of 
approach (A), disapproach (D), transport (T), grasping (G) and ungrasping(U) operations: 
 
< T >=< A1 ><G1 >< D1 >< T1 >< A2 ><U1 >< D2 > ...< An ><Un >< Dn > 
 
On the next level, the pick and the place operations, consisting of an approach and a depart trajectory 
and a gasp or ungrasp action, respectively, are formed. The representation of a pick/place operation is 
as follows: 
 

>><><>=<< DGAPick  resp. < Place >=< A ><U >< D >  
 
These are the basic building blocks that carry semantic information with respect to the goals of a user 
demonstration. Every such an operation causes changes in the spatial arrangement of objects in the 
scene. This spatial arrangement, as a part of the state, is expressed in terms of spatial relations between 
the objects in the scene. Every pick and every place action changes these relations and the according 
state. A pick operation deletes all relations between the picked entity and every other object in the 
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environment and a place operation re-establishes a different set of relations, depending on the position 
the object is placed on. These changes are computed and represented using lists of relations. Changes 
are represented as a set of relations between two objects and their value (true or false) and a function 
CH is established that assigns the changes to every pick operation: 
 

U
j

jjjji valobjobjrelpickCH )21()( =><  

The CH-function is defined analogously for place operations. 
 
Combining a pick- and a place-operation to a pick&place-operation causes the computation of the 
overall changes carried out by this operation in the scene. The changes of each sub-part are merged to 
a list of effects that this pick&place operation has. Formally, a pick&place-operation is defined as  
 
< P & Pi >=< Picki >< Transport j > * < Placei >. 
The changes for the Pick&Place-operation are calculated as 
 

)()()&( ><><=>< iii PlaceCHPickCHPPCH U . 
 
Once a sequence of pick&place-operators are extracted from the user demonstration, the overall goals 
of the task can be deduced. This is done by sequentially accounting all the changes performed by any 
pick&place-operation. Unnecessary changes that are invalidated by any later action are detected and 
deleted from the set of changes: 
 

U
ij

jii PPCHPPCHPPCH
>

><><=>< })&({\)&()&(  

 
When any set of changes becomes the empty set, this means that every change induced by the 
according operation is deleted by any later action and the according operation does not contribute to 
the goals of the sequence and should be pruned. So only the operations that move the state of the 
environment from the initial towards the goal state are regarded in the following steps and information 
from the unnecessary operations are discarded.  
 
The result of these steps is a hierarchical task description including its goals and subgoals that is built 
from a single user demonstration, consisting only of the necessary actions and leaving out the 
operations demonstrated unintentionally by the user. This hierarchical task representation is further 
generalized beyond the single user demonstration in order to be applicable in similar environments. 
This generalization is not data-driven because single-shot learning cannot provide the necessary large 
data sets needed for data-driven generalization. Instead of that background knowledge in form of rules 
is applied that generalizes a single example over space (trajectories are classified based on the 
accuracy needed during the execution time) and object classes (generalization from a specific object to 
the class of objects it belongs to).  
 
Additionally, a semantic analysis of the scene has to be done. For this, statistics are maintained for 
object co-occurrences. Whenever special objects are used, like tools or containers that can perform 
several specific operations (pouring liquids from a bottle into a glass, operating a screwdriver), these 
statistics are evaluated to obtain information about which operation is most likely in the current 
context and which object is most likely to be referenced by this operation. This process is called 
statistical generalization.  



COGNIRON                                                                                               Deliverable D.4.3.1 
FP6-IST-002020                                                                                          31.01.05  
  Revision final 
 

Page 12 of 17                         
 
 

Hierarchical Task Representations – Macro Operators 
 
Once the user demonstration is analysed, the compiled information is enriched with structural 
information describing the attributes of the objects present at the scene and execution constraints. The 
result is mapped onto an abstract structure that combines all available knowledge into a representation 
suitable for execution. This is formed similar to the representation chosen in the STRIPS system, 
called macro-operators. Every macro-operator is associated with its signature, containing the total pre- 
and post conditions, in order to enable plugging together macro-operators that happen to have 
matching signatures.  
 
Each operation in a segment-tree analyzed in the way described in the preceding chapter encapsulates 
certain pre- and post-conditions that describe the state of the environment at the beginning and the end 
of that certain operation. These conditions are propagated from the elementary operations up to the 
manipulation segment level. A generalization regarding the position and object types and their features 
is done in parallel. The total pre- and post-conditions of all manipulation segments of a macro-operator 
are propagated to a context, under which the macro-operator is executable, and to effects that an 
execution of the macro-operator has on the environment. A positive evaluation of the context enables 
its execution and an error free execution leads to the desired effects in the environment.  
 
Several different user demonstrations either performed in sequence one after the other or with 
interruption (the more usual way an end user builds the task knowledge of a robot companion) each 
form a different macro operator that is added to a knowledge base of learned and executable tasks. 
Execution of a macro-operator is done by instantiating the generalized objects with objects present in 
the execution environment. Macro-operators can be selected from this database for a specific 
environment and a specific job to be accomplished. This selection is guided by the according pre- and 
post-conditions that the execution presupposes and provokes respectively. The topic of multiple 
macro-operators applicable in a certain situation is not dealt with in the current project phase.  
 

Experimental Results 
 
In this section an example task and the analysed results are described in order to show the 
functionality of the implemented system. 
 
The initial state of the environment is shown in Fig. 4. The objects apparent in the scene are a desk 
with a silver tray, a plate, a small bowl and a cup. In the demonstration, first the left hand picks the 
plate. In parallel, the right hand picks the bowl. Next the plate is placed on the silver tray and 
afterwards the bowl is placed on the plate.  
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The analysis of the scene detects the following actions: 
 

1. The grasp operation of the plate (Fig. 5) 
 

2. Grasping the bowl (Fig. 6) 
 

3. The ungrasp operation of the plate (Fig. 7) 
 

4. Releasing the bowl (Fig. 8) 
 
 
 
 
 

Bowl 

Silver tray 

Cup 

Desk 

Plate 

Fig. 4 : Initial environmental state of the described task 
demonstration 
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At each step the systems requires the user to either confirm the learnt hypothesis and accept the 
detected operation or, alternatively, correct or reject the operation (Fig. 9). This is useful to add the 

Fig. 9 : Hypothesis confirmation dialogue 

Fig. 6 : Grasping the plate 

Fig. 7 : Ungrasping the bowl Fig. 8 : Ungrasping the plate 

Fig. 5 : Grasping the bowl 
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possibility to correct errors occurring from the transition from the subsymbolic sensor data to the 
symbolic entities that form the semantics of a task.  
 

 
The segmentation of this task, performed with the methods described in the preceeding sections and 
the result achieved is visualized in Fig. 10. The resulting macro-operator, that is added to the 
knowledge base of stored macro-operators, together with it’s context and contributions is presented in 
Fig. 11.  
 

Fig. 10 : Resulting Segmentation
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The example shows how user demonstrations can be analysed in the proposed way and task 
descriptions can be successfully generated from a single user demonstration and can be generalized to 
be applicable in significantly different but similar in terms of the task to be done. In particular, the 
system successfully executes the following of operations: 

- Automatically detection and segmentation of two-handed manipulations according to the 
modelled classes 

- Recognition of spatial, temporal and object-based dependencies of both hands 
- Detection of relevant actions and pruning of unnecessary operations is successfully performed 

 
 
 

2 Future Work 
 
As mentioned in the last section, there can be multiple macro-operators applicable in a certain 
situation, resulting from multiple user demonstrations of the same task. The issue of dealing with these 
duplications of task knowledge and exploiting it as far as possible will be tackled in the next project 
phase. This will include learning task attributes that cannot be learned from a single example like 
reordering possibilities or pruning of unnecessary steps.  
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