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Executive Summary

This report describes the initial experiments carried oiti the JABBERWOCKY system devel-
oped as part of the University of Hertfordshire’s first phas¢he program of research for the
COGNIRON project. TheJABBERWOCKY system generates appropriate action commands that
can be used by a robotic companion to imitate the tasks danated by a human user, solving
the correspondence probleof mapping observed behaviour to the robot’s own embodiment
The report is complemented by a demonstration video ofABEBERWOCKY system using cap-
tured data from a human demonstration to generate corrdsgpactions targeted to two dif-
ferent (dissimilarly embodied) imitator platforms (in sitation), that imitate by matching the
arrangement of objects on a workspace, starting from diksimitial positions and according
to combinations of differergffect metricgsee Appendix A).

The experimental results provide initial validation foettABBERWOCKY system, and illustrate
the qualitatively different imitative behaviours thatuéfrom using different metrics to match
the effectaspects of the demonstration of object arrangement.

The work was carried out to satisfy the requirements of Rebearea (RA) 4 as outlined in
Work Package (WP) 4.2 to meet the 12 month target; Deliverdl®2.1. Details of the RAs,
WPs, Key-Experiments (KEs§,0GNIRON Functions (CFs) and Deliverables can be found in the
respectiveCcOGNIRON project documents.

Role of Evaluation of Experiments on Correspondence Prob-
lem in Robot Learning on How to Imitate Humans in COGN-
IRON

The work presented in this report for WP4 € ¢rrespondence mapping across dissimilar bodies
(How to imitate)”) helps to provide rigorous scientific foundations @mGNIRON functions CF-
RG:Learning to reproduce gesturesind CF-LIF‘Learning important features of a task'and
develops in synergy with workpackage WP4:3yb-goals extraction and metrics of imitation
performance)) by (1) providing a broad theoretical and practical systiénszientific framework
from which to select what aspects of behaviour to imitgtea{ and sub-goal metrics for states,
actions and effecjggoing beyond the current state-of-the-art, and (2) by enm@nting a multi-
targetable architecture which allows the specific featesgsacted from human demonstrations
to be imitated on different platforms.

Relation to the Key-Experiments

The work presented in this report is relevant to KE3 scrigarning Skills “Arranging and in-
teracting with objects” The script stresses the robot’s ability to learn from imiplfimitation
learning) and explicit (verbal interaction) teaching. As €mbodiment of the human user and
the robotic companion will be dissimilar,crrespondence problemust be solved, defined by



the imitator's embodiment, the sub-goal granularity, amel inetrics used to match aspects of
behaviour. Extensions of tlieBBERWOCKY system presented this report could be used to gen-
erate action commands that a robotic companion could useitate the tasks demonstrated by
a human user. Since the robotic platform to be used ictheNIRON KE3 is not yet fixed, and
also for maximum applicability, WP4.2 has adopted a gerggpjaroach to the correspondence
problem, targeting multiple different potential platfagnThe corresponding solutions produced

by the system can be targeted to multiple robotic platforntsadapt to arbitrary starting condi-
tions.
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1 Introduction

For a robot to learn tasks and skills from a naive human, e.ghome inhabited by people who
neither can nor want to learn programming languages, ieMareematics, nor artificial intelli-
gence techniques, the robot’s capabilities must implergenéral imitation and social learning.
A robotic companion learning tasks and skills by demonistndtom the human user is a power-
ful paradigm for transferring knowledge within a social tx. But, as the robot and the human
will not have the same embodiment and not the same accesgett affordances, the robot must
have the capability to discover appropriate mappings ahits actionsso as to reproducgates
andeffectsthat match the task demonstrated by the human. This is ctiléecbrrespondence
problemin imitation and must be solved by the robot in order to susftdly imitate.

Different aspects of matched behaviour are required fderdiht types of social learning/robot
programming by demonstration. We review the relevant #técal concepts with emphasis on
different metrics and classes of correspondence problefireed by the sub-goal granularity and
the choice of which aspects of behaviour are significant &ondlsl be matched.

Towards solving the correspondence problem and allowingpatic companion to match the
behaviour of the human user, theBBERWOCKY system is developed. The system uses captured
data from a human demonstrator to generate appropriatmamimmands that can be targeted
for various software and hardware platforms. These acsbiosild allow the imitating agent to
achieve corresponding actions, states and effects, dejeod

e the metrics used to evaluate the similarity between thergbdedemonstration and the
imitative behaviour,

e the sub-goal granularity,

¢ the embodiment restrictions and constraints (as imposédditargeted imitator platform)
and

¢ the possibly different initial state of the objects in th@iemnment.

The system is intended to be able to generalize acrossieasah all of the above items.

The resulting character of the imitative behaviour will aftg depend on the metrics used to
match aspects of the human demonstrated behaviour. In itied 2 months we have con-
centrated oreffectmetrics, since they are essential for imitation of objecnhipalation and
arrangement (a capability assumed important for a cognitbotic companion) and also since
they can be employed by a variety of imitators with very drskr embodiments. We defined a
set of important effect metrics for use in the initial expeents with theJABBERWOCKY system.
These are demonstrated and evaluated for two target impkttiorms in experiments reported
here.

Further directions, including extensions to usstgteandactionmetrics, different target imitator
platforms, the characterization of tlspaces of metrigsaand the relation to goal extraction are
also discussed.



2 Overview

The remainder of this report is organized as follows:

Sections 3 and 4 give theoretical background oretlent-based perspectiieimitation and the
correspondence probleaf how to map actions modelled by a human to those of an autonem
imitator.

Section 5 gives further background by presenting an ovwereiethe ALICE (Action Learning
via I mitating CorrespondingEmbodiments) generic framework for solving the correspocde
problem. TheaLICE framework provides a functional architecture that inforting design of
robotic systems that can learn socially from a human demeatost

Section 6 gives details on the relevance of the work predentéhis report to thecOGNIRON
functions and key-experiments.

One system informed by the.iCE framework iSSABBERWOCKY, developed for the OGNIRON
project, and presented in section 7. TARBBERWOCKY system uses captured data from a human
demonstrator to generate appropriate action commandsahdie targeted for various software
and hardware platforms.

Section 8 defines a selection of metrics that are used to nifaéaifectsaspect of the captured
demonstrated tasks by theBBERWOCKY system in the experiments presented in this report.
The experimental setup is given in section 9, while the a@rpanmtal results are presented and
discussed in section 10.

Finally, section 11 gives a summary, conclusions and dgssifiture work.



3 The Agent Based Perspective on Imitation

In order to identify the most interesting and significantlgeons on robot-human imitation, an
agent-based perspective must be used [Dautenhahn andi&@®?2]. In this perspective, im-
itation is best considered as the behaviour of an autonoegerst in relation to its environment,
including other autonomous agents. The mechanisms umudigrimitation are not separated
from the behaviour-in-context, including the social andh+social environments, motivations,
relationships among the agents, their embodiments, thet'agedividual and learning history,
etc. Such a perspective helps unfold the full potential séaech on imitation and helps in iden-
tifying challenging and important research issues. Thenalgased perspective has a broader
view and includes five central questions that the imitatipgras must addressthoto imitate,
whento imitate,whatto imitate,how toimitate and how taevaluatea successful imitation. A
systematic investigation of these research questionsimam the full potential of imitation from
an agent-based perspective [Dautenhahn and Nehaniv,.2002]

3.1 The “Big Five” Questions

An autonomous agent, in order to be able to imitate must addhe following five questions.

Who to imitate? It is important that the imitating agent chooses its mbdeluch a way that
engaging in an imitating behaviour would benefit the imitamosome way. The interact-
ing agents might have different goals and receive differ@nards. The imitator must first
examine whether the model actions are beneficial or relaeahis own tasks and then
extract a possible behaviour to imitate. If the agent hahtmse among several models,
some evaluation of the performance of the appropriate hetgs) by the possible candi-
date models is required before a choice is made (cf. [DaatamHL994]). Note, an agent
is not required to be aware of the fact that the performed\bebais to be imitated by
another agent, although it might help to provide feedbackhernsuccess of the imitative
behaviour.

For the work described in this report, it will be assumed,eneyal, that the relationship is
given (demonstrator = human user, imitator = robotic congrand not to be discovered
by the imitating agent. It will also be assumed that the huimamware of her or his role as a
demonstrator and will not try to deceive or confuse the ronatinstead try to demonstrate
the task in the most possibly clear way.

When to imitate? Deciding when to engage in imitating behaviour, the appad@time, situa-
tion, context etc. is another important question that mastlsolvedlmmediate imitation
leads to synchronous behaviour, with the agents sharingaime context and using the
same objects. This can be beneficial in speeding the pro¢dsarning. Deferred imi-
tation might occur later, even at the absence of the model but wahielevant context.

LIn this report the terndemonstratomwill be used to indicate an agent that has an active ‘teaabé, i.e. is
aware that a ‘student’ is observing the demonstration afidrwito accommodate it. In contrast, the temodelis
used in a more generic case to indicate any agent that pesfobehaviour that could be imitated by another agent.



Synchronic imitatioroccurs at the same time as the model’'s behaviour, usingtstgen-
ilar to the ones the model is using [Nielsen and Dissanayz@3].

The question ofvhenalso includes the issue wfhyto imitate. The agent should be moti-
vated to imitate the model instead of imitating indiscriatigly all the time. For example
there might be a benefit for imitating, either for the indivad,, or for its kin/group.

For the work described in this report, the imitator mightfpen immediate or synchronic

imitation while learning (depending on whether the same @responding objects are
used) and deferred imitation when the task that has beemdéareeds to be performed at
a later time.

What to imitate? There are several aspects of a demonstrated behaviouothdthe imitated.
It may be preferable to imitatgctions states or desirableeffectsof an observed behaviour
[Nehaniv and Dautenhahn, 1998, 2001, 2002]. The structiteedcknowledge transferred
presents another problem, as there can be a distinctiorebatdifferent modes of imita-
tion. Richard Byrne and Anne Russon propose two differemdgiof imitation,program
levelandaction levelas opposite ends of a spectrum, i.e. copying the organiztstruc-
ture of the behaviour versus copying the surface form of biela As a general conse-
guence of this, an agent is required to have the ability t@dthierarchical structures in
order to exhibit program level imitation [Byrne and Russb@98].

The purpose of the imitation relates to the degree of itsesgc Using the example of
imitating a dance instructor, one might choose to imitatg tme end result, e.g. reaching
a specific location on the dance floor. This can be done eithéollowing the path that
the instructor used or maybe ignoring it (partially or thtal The student can also try to do
the dance steps that the instructor performed while movinthat path. In this example
choosing to ignore either the path or the actions that nedxk tperformed in the exact
order of sequence will result in poor imitation accordingrnost dance judges. This is
especially true because as external observers they carabarenof the goals and priorities
that the imitator has chosen. Using a differgranularity, i.e. distinguishing which are the
important aspects of the model performance and dividingntimo a number of sub-tasks,
will produce different results.

In the case of imitating the painting of a wall, the situatismuite different. The net
result, i.e. covering the entire wall with paint is what ispontant and can be achieved in
numerous ways. The order of paintbrush strokes in the sequemot important. Nor is
replicating the exact actions. The use of a brush of differedth or type than the one used
by the model is also not important here, nor is e.g. the uselafider to make reaching
the higher part of the wall easier. The imitator is free topat three aspects and can still
succeed. Replicating exactly the same hand movements asaithel, but being far from
the wall without the brush making actual contact with theaee will result in failure due
to misinterpretation of the desired result. Using the saraengle it can also be pointed
out that even if the entire wall is finally covered, any paitatirss on the floor or the rest
of the room will undermine the overall result. Thereforeing into account the (both
desired and undesired) effects on the environment cant diffesuccess of the imitation.



The perspective of the observed actions - whether it is absof relative - poses another
importantissue. If any of the actions performed by the madehot mirror-symmetric (as
is most usual), choosing among the possible versions vidcathe imitation result, e.g.
if a robot is to imitate somebody that waves her right handukhthe robot raise its right
or left hand? (Not to mention what should the robot shouldfdbhas a gripper but no
hands!)

The complementary questionwhatto imitate is addressed by WP4.1 (“Sub goals extrac-
tion and metrics of imitation performance”). Later in theGNIRON project, work from
WP4.1 will be integrated with the work stemming from WP4.€¢frespondence mapping
across dissimilar bodies (How to imitate)”, presented is teport) and provide metrics
and granularity to be used in the experiments usingABBERWOCKY system described

in section 7. For the work presented in this report, in ordguarform thehow to imitate
experiments until month 18 and from the start of the first y@drere the WP4.1 results
were not yet available), the demonstrated behaviour aspeattare to be imitated (actions,
states and/or effects) are given in advance, and not dised\y the agents.

How to imitate? Once the agent has decidetioandwhatto imitate, appropriate mechanisms
must be employed to achieve the necessary imitating actidine embodiment of the
agent and its affordances will play a crucial role. It is pokesthat the model and imitator
agents will have dissimilar embodiments with different rmenof parts, limbs, joints,
degrees of freedom (DOF). Even small differences in theireqaffordances might affect
the performance of the imitation behaviour. In order to deavhich muscles or motors
and actuators to use in order to move its body parts, the agast (at least partially)
solve the correspondence problefsee section 4), the main focus ©®GNIRON WP4.2
(“Correspondence mapping across dissimilar bodies (Hointtate)”) and the research
presented in this report.

How to evaluate the imitative behaviour? For an attempt made to imitate the model behav-
iour, there needs to be a measure of evaluating the behaVimatching. Explicit metrics
are probably not used by animals and humans, but in artigistems, the choice of an
appropriate metric is very important, as it will be used tptage the notion of the differ-
ence between performed and desired actions and also tkeedifie between attained and
desired states [Nehaniv and Dautenhahn, 2001, 2002, Atisskis et al., 2002, 2003a,
2003b]. The evaluation can be performed either by the iontéhe model or an external
observer.

The question okvaluatingthe imitative behaviour is closely linked to the question of
whatto imitate; the metrics used will have to measure the sinylaif the chosen aspects
to imitate (actions, states and/or effects). For exampline statesof the demonstrated
behaviour are to be imitated, appropriatate metricsnust be used.

For the work presented in this report, as the aspects toterata given and not discovered
by the imitating agents, the metrics will also be given,aast of found from observing the

2This can also involve learning.



task demonstration. For the experiments described in éfpisrt, the agents are imitating
the effectsaspect of the demonstration and we have defined oureffestmetrics (see
section 8).

Each question presents its own difficulties and researchlgmts. An integrated approach to
these questions must be the ultimate goal of work on imitdhadaptive systems, in particular
for robots learning skills and tasks from naive human users.

3Also, towards a characterization of tispace of effect metricsve are using these metrics to explore ab-
solute/relative angle and displacement aspects, focusirayerall arrangement and trajectory of manipulated ob-
jects (see section 8).



4 The Correspondence Problem in Imitation

A fundamental problem when learning how to imitate is to taesn appropriate (partial) map-
ping between the actions afforded by particular embodisierdéchieve corresponding states and
effects by the model and imitator agents [Nehaniv and Ddnatlen, 1998Db]. For similar embod-
iments, this seems to be straightforward (although it digtiravolves deep issues of perception
and motor control). But once the assumption that the agesitsp to the same ‘species’, i.e.
have sufficiently similar bodies and an equivalent set ofoast is dropped, as with a robot
imitating a human, the problem becomes more difficult andmlema Even among biological
agents, individual differences in issues of perceptioat@my, neurophysiology, and ontogeny
can create effectively dissimilar embodiments between begmof the same species. A close
inspection of seemingly similar artificial agent emboditsazan yield similar conclusions due to
issues like individual sensor and actuator differencesi{iare) or the particular representations
and processing that these agents employ (software). Iod®NIRON setting, it will be desir-
able to have different kinds of agents in the learning preces. humans and robots interacting
socially.

The following statement of theorrespondence problefNehaniv and Dautenhahn 2000, 2001,
2002] draws attention to the fact that the model and imitag®ents may not necessarily share
the same morphology or may not have access to the same aftesla

Given an observed behaviour of the model, which from a givartieg state leads
the model through a sequence (or hierarchy [or prograngubfgoalsn statesac-

tion and/oreffects one must find and execute a sequence of actions using one’s ow
(possibly dissimilar) embodiment, which from a correspagdstarting state, leads
through corresponding sub-goals - in corresponding statg®ns, and/or effects,
while possibly responding to corresponding events.

In this approach, through a correspondérar@ imitator can map observed actions of the model
agent to its own repertoire of actions as constrained byvits embodiment and by context
[Nehaniv and Dautenhahn 2000, 2001, 2002]. Qualitativéfer@nt kinds of social learning
result from matching different combinations of matchingi@ts, states and effects at different
levels of granularity [Nehaniv, 2003] (see subsection.4.1)

Artificial agents that have the ability to imitate may userf@®s more than one) metrics to
compare the imitator agent’'s own actions, states and effeith the model’s actions, states and
effects, in order to evaluate the imitative behaviours aadaver corresponding actions that they
can perform to achieve a similar behaviour. The choice ofig®etsed is therefore very im-
portant as it will have an impact on the quality and characte¢he imitation. Many aspects of
the model behaviour may need to be considered, as the mediptsre the notion of the salient
differences between performed and desired actions andredstifference between attained and
desired states and effects [Nehaniv and Dautenhahn 2002).2The choice of metric deter-
mines, in partwhatwill be imitated, whereas solving the correspondence grolioncernbow

“4In the context of the work presented in this reporgeipeis an embodiment-independent overall (loose) plan,
taking into account the metrics, sub-goal granularity anitibil conditions. Each recipe can be adapted according to
a targeted platform’s own embodiment restrictions andexdnto be executed by the imitator.



Table 1: A taxonomy of social learning, imitative and matched behawur. Extending
[Call and Carpenter, 2002], different theoretical termsadial learning, imitative and matched
behaviour can be associated with each combinatiayoafs actionsandresults Note that by
using the term socidkarning Call and Carpender assume at least a degree of novelty.\ldowe
the classification can be used just as well also for imitativenatched behaviour when there is
no novelty.

Goals Actions Results ,
_ Theoretical term
(understood) (copied) (reproduced)

yes yes yes Imitation
yes yes no Failed Imitation
yes no yes Goal Emulation
yes no no Goal Emulation
no yes yes Mimicry
no yes no Mimicry
no no yes Emulation
no no no no Social Learning

to imitate [Dautenhahn and Nehaniv, 2002]. In general, etsp# action, state and effect as well
as the level of granularityw(hat to imitat@ do all play roles in the choice of metric for solv-
ing the problem othow to imitate[Nehaniv and Dautenhahn, 2001, Alissandrakis et al., 2002,
Billard et al., 2004]. On-going research is thus addrestiegcomplementary problem of how
to extract sub-goalsindderive suitable metricautomatically from observation [Nehaniv and
Dautenhahn, 2001, Nehaniv, 2003, Billard et al., 2004, r@aliand Billard, 2004] andOGN-
IRON D4.1.1.

4.1 Taxonomies of Imitation, Social Learning and Matched Bkaviour

Josep Call and Malinda Carpender in [Call and Carpente2P@8sociate the theoretical terms
imitation, goal emulation mimicrandemulationwithin a common framework based goals
actionsandresults(see Table 1).

To illustrate the distinction of goals, actions and res(dsused in [Call and Carpenter, 2002]),
let us assume the imitator is observing the model manimgatibox. If the box is transparent
and an object, such as piece of candy, can be seen insidenitaéor may understand that the
goal of the model is to retrieve it. If afforded by the box, the iatdr might open the box in
a different way, instead of copying the exact modetfions for example moving a sliding side
instead of lifting the lid. Opening the box will reproducestesultof having an open box. The

5This box could be similar to the ‘artificial fruits’ used by [Wen, 2002] for investigating the imitation of
sequential and hierarchical actions in human children aidganzees.



goal could be “misunderstood” as simply opening the box.evdatively, the imitator might
instead crush the box achieving the goal of obtaining thelgamside.

The work presented in this report does not use this taxonoynjChll and Carpenter, 2002],
which was concerned with terminological issues in psyadppland biology, but a related one
developed also for Al applications. For the research pteseim this report we will use the
systematic taxonomy presented in [Nehaniv, 2003] showmiel2 that uses the combination of
metrics that measure the similarity in a given aspect of thdetis behaviour and the granularity,
to define classes of imitatia@orrespondence problem$his taxonomy is broad and can be used
in both psychology and biology, and also in computer sciemzkartificial intelligence.

Call and Carpenter’s taxonomy merges aspectgattto imitate anchowto imitate, but from the
perspective of the correspondence problem, it is usefutpamte these issues. Nehaniv offers
a taxonomy strictly for the latter. Althougdctionsare also used in Nehaniv's framework, the
resultsare partitioned intstates(of the agent bodies) areffects(changes in the environment).
The notion ofgoals(and to some extemésult9 as used by Call and Carpenter is a separate issue
related towhat to imitate Inferring another agent’s goals is a difficult problem whiill not

be addressed in this report. Compared to humans and anifioadsiificial agents, recognizing
intentionality (understanding the goals of the model) remains a largelplued problem. The
choice of metrics and granularity that the agent should asmitate is another complementary
problem addressed by on-going researchgoal extraction[Nehaniv and Dautenhahn, 2001,
Billard and Schaal, 2002, Nehaniv, 2003, Billard et al.,£200alinon and Billard, 2004].

Rather, in the system presented and the experiments destursthis report (see sections 7 and
9) goals (or sequences of sub-goals), metrics and gratyubag not extracted by the imitator,
but are given.

Cognitive companions learning tasks and skills in the hognartitating human demonstrators
will need to handle aspects in all these classes. For the m@sented in this report we will
concentrate in theffectsaspect (classes 3 to 5), as effects on objects in the envaotitheir
arrangement and manipulation) are likely to be of primatgnest to a human user in a home
environment.

In the future, the work will extend to considstatesactions and combinations of them.



Table 2:Classes of correspondence problems arising from particutacombinations of met-
rics and granularities. Each class is defined by the combination of metrics that medbe
similarity in a given aspect of the model’s behaviour andgrenularity used. [Nehaniv, 2003]
relates this taxonomy to theoretical terms traditionabgdi to classify types of social learning
and matching behaviour.

Metrics Granularity| Class
- - - end 0
- - - coarse 1
- - - fine 2
- - effects end 3
- - effects coarse 4
- - effects fine 5
- states - end 6
— states - coarse 7
- states - fine 8
actions - - end 9
actions - - coarse 10
actions - - fine 11
- states effects end 12
- states effects coarse 13
- states effects fine 14
actions - effects end 15
actions - effects coarse 16
actions - effects fine 17
actions states - end 18
actions states - coarse 19
actions states - fine 20
actions states effects end 21
actions states effects coarse 22
actions states effects fine 23




5 The ALICE framework

A mechanism that solves the correspondence problem is entedgart of any artificial system
with successful imitating behaviour capabilities. In po&s work we have developeslICE
(Action Learning via mitating Correspondingembodiments), a generic framework for solving
the correspondence problem [Alissandrakis et al., 20024 28lissandrakis, 2003]. TheLICE
framework assumes that amitator agent is exposed to modelagent, which is performing
a sequence ofctions these actions comprising theehaviourof the model. By performing
an action, the agents can change tis¢iteand cause someffectson their environment. The
ALICE framework builds up a library of actions from the repertadfean imitator agent that
can be executed to achieve corresponding actions, stadesfi@cts to those of a model agent
(according to given metrics and granularity) (see Figure 1)

proprioceptive information

/] proposed \

Generating action(s)

Mechanism
roposed suggested

prop :
v key action(s) ' actign(s) _
Model ' - — | Metric Imitator
percepts Correspondencg

Library '
update
entries
Vieahan Refigrped
echanism .
date -
up <m History |-
K sequenc /

Figure 1: The ALICE framework. The perceptsof the imitator arising from the model’s be-
haviour (actions, states and effects) aamdprioceptive informatior{state) of the imitator form
akeythat is used by theorrespondence libraryif it matches any of the existing entry keys at
that stage of the library’s growth) and tigenerating mechanisto produce a sequence of one
or moreproposed action(s)These are evaluated usingreetric, and the correspondence library
is updated accordingly with the resultisgggested action($pr the imitator. In parallel (shown
in the figure using a grey color), thestory mechanisman be used to discover aagtion se-
guencesrom thehistory, that can improve any of the existing library entries. Thgusmce of
all the actions performed so far by the imitator composes$istery.

TheALICE framework is comprised of two major components on top of geyerating mecha-
nism(see section 5.3) of imitative behaviours. An overview @& ftamework is shown in Figure
1. The first component builds-upcarrespondence librarysee section 5.1), using perceptual



(both exteroceptive and proprioceptive) data to relatertbdel actions, states and effects to cor-
responding actions that can be performed by the imitatoreswlt in similar® states and effects.
The second component, thasstory mechanisr(see section 5.4), addresses any limitations of the
generating mechanism used by the agent, by discovering@ualialternative correspondences
from the imitator’s actiorhistory.

The Correspondence Library When observing the model (at a certain sub-goal granujarity
the imitator agent constructskay, consisting of the perceived action(s), state(s) and/or
effects of the model. The key can also include propriocepiiNormation (state of the
imitator). This key is compared with thentry keysof the correspondence library so far.
Depending if the key matches another existing entry keyfdahewing procedure will be
taken:

Create a new entry If the key doesn’t match any other corresponding library, kbgn
a new entry is created in the library, with this key as theyekéy. This entry will
initially contain a corresponding action of the imitatmyuhd by thegenerating mech-
anism

Update an existing entry If the key matches an existing entry key, then either:

Use the entry The entry will contain one (or more) corresponding imitaaation
sequences. If more than one exists, choose one from the&distding to some
criteria, e.g. the shortest imitator’s action sequence. Or

Modify the entry If the generating mechanism can produce a better (accotding
the metric) imitator action, modify the entry to contain it.

The imitator can then use this imitator action to imitateafoging its state and resulting in
effects on the environment).

The History Mechanism In addition, the imitator agent can examine its history & &if se-
guential imitator actionperformedso far).

Update an existing entry If an imitator’s action (or a sequence) in the history resuit
the same (or sufficiently similar) imitator’'s state and/@eets, as compared to the
model’s state and effects of an existing entry key, then fgdtat relevant entry in
the correspondence library, by adding this imitator's@us) to its list of actions
under that key.

There are a variety of existing machine learning techniq@uesessing experience-based learn-
ing, for example, reinforcement learning [Sutton and Bal&98], case-based reasoning [Kolon-
der, 1993], inductive learning [Sammut et al., 1992, Quinkd93], or learning of behavioural
histories [Michaud and Matari¢, 1999], and others. Thentibn is not to develop a new and
efficient machine learning algorithm, but instead a franvdwor learninghow to imitateby

SUnless otherwise stated, comparison and similarity dejpgaaech the metrics used in each context. Matching
comprises either perfectmatch, or doosematch that can depend on a similarity threshold.



solving the correspondence problem is proposed and syStathastudied. TheALICE frame-
work provides a functional architecture that informs theige of robotic systems that can learn
socially from a human demonstrator. Clearly, this framdwaan easily be combined with these
or many other machine learning techniques.

5.1 The Correspondence Library

The correspondence librdrgonsists of a number of entries, each identified kew The key
can be any combination of perceptual (model’s action, statkeffects) and proprioceptive (im-
itator’s state) data. These data relate to aspects of thelmdehaviour, and the imitator’s state
when those aspects were first observed. Each entry will toatee (or a list of) imitator’'s ac-
tion(s) that if performed when the key is next observed, khachieve corresponding imitator’s
state and/or effects. Note that a metric value associatittie performance of any of these im-
itator’s actions is not kept in the entries, as it can be ddpenof the imitator context (imitator’'s
state).

A similarity thresholdmay be used to determine if a key has been observed beforeg Esi
looser matchingwill result in a smaller number of entries in the library. Asse entries are
more generic, they will be updated more frequently (if th&aor is repeatedly exposed to the
model), resulting in faster rate of learning. On the otherdhdhe imitating performance may or
may not be acceptable depending on the minimum granulaupyired by the model behaviour.

5.2 Metrics and Granularity

The choice of metric and granularity will in part determinkatthe agent will imitate and affect
the overall character of the imitation. The metrics usedukhcapture all the necessary and
important aspects of the actions that the agents can perfoerstates they can be in, and possible
effects on the environment.

The comparisons may involve all three aspects of the betigactions statesandeffects or any
combination of them. The combination used (together wighdoice of granularity) will define
the correspondence problastass(see section 4.1, table 2). atching or similarity threshold
can be used, to determine how ‘similar’ they need to be inrcenatch.

5.3 The Generating Mechanism

A generating mechanisis used by the\LICE framework to produce the contents of the corre-
spondence library; it can beny algorithm or mechanism that generates actions (or seqsence
that are valid (i.e. within the agent’s repertoire) and gaesn the context of the imitator.

The fact that an imitative action — even an accidental one y-ne@eive positive feedback could
increase the animal’s motivation and tendency to imitate[[Rautenhahn and Nehaniv, 2002]).

‘At each stage in its growth, a library of correspondencesnisegample of a (partial) relational ho-
momorphism between the abstract automata associated téthmiodel and the imitator [Nehaniv, 1996,
Nehaniv and Dautenhahn, 2001, Nehaniv and Dautenhahn].2002



Moreover, this can serve to draw attention toward saliepéeis of the environment and reveal
affordances of actions and objects useful for survival m¢burse of ontogeny. In theLICE
framework, no direct feedback from the model is used, irtstea metrics are used to evaluate
the imitative behaviours.

In the ALICE overview, the generating mechanism remains underspec#gethe performance
of theALICE framework does not depend on the precise implementatidreggénerating mech-
anism as long as this mechanism returns a valid action tinabegerformed within the current
context by the imitator, from the entire action-space ofagent.

Generally, depending on the size and dimensions of theraspace, the generating mechanism
would more efficiently consider the states of the model aedrtiitator agents (also the effects
of the model), and use them to construct the selection of dhegponding actions (e.g. when
using inverse kinematics). Alternatively, either a lesscme generating mechanism, or a gen-
erating mechanism that produces entirely random actiogfinsierve just as well the purpose
of exploring the action-space when solving the correspooel@roblem, especially if the state-
space is sufficiently ‘small’. For a large action search spacsmarter’ and more sophisticated
generating mechanism is required.

Depending on the position where it lies on this spectrumggreerating mechanism may range
from inadequate if used on its own (e.g. returning just ramgequences of moves) to a highly
specialized complex algorithm that can return the most @pate correspondence possible
without need for learning. For real-world applicationseamould expect that the more efficient
the generating mechanism used, the faster the learningvilatben be.

5.4 The History Mechanism

If only the actions found by the generating mechanism ard tséuild-up the correspondence
library, the performance of the imitator would be directiyited by the choice of the algorithm.
Moreover, some of the stored actions, although valid sohstito the correspondence problem
related to the actions of the model, may become invalid itagecontexts (state of the imitator).
The history mechanisrhelps to overcome these difficulties: The imitator can exeniis own
history to discover further correspondences without rgeenmodify or improve the generat-
ing algorithm used. These correspondences wilséguences oéctions since, no matter how
simplistic, the generating mechanism is required to be tabéxplore the entire search-space of
single actions.

The agent’shistory is defined as the list of imitator’s actions that were perfednso far by
the agent while imitating the model together with their fesg imitator’s state and effects. This
kind of history provides valuable experience data that ban be used to extract useful mappings
to improve and add to the correspondence library created tipat point. The contents of the
history are useful, since the results (imitator’s resglttate and effects) of imitator actions are
known from past experience given a certain context (imitafarevious state), without need for
prediction of performande

The methods for extracting this information from historymaary depending on the particular

8This remains a hard problem, especially for physical rabsyfstems.
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realization, and managing the found sequences of actiondej@end on additional metrics (e.g.
keeping only the shortest sequence that can achieve thedeasate and/or effects, or keeping
only the top five sequences according to a performance neasline size of the history will
also depend on the actual implementation and/or the tadkexton
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6 Relevance tacOGNIRON Functions and Key-Experiments

The work presented in this report for WP4Z¢rrespondence mapping across dissimilar bod-
ies (How to imitate)) helps to provide rigorous scientific foundations &WwGNIRON functions
CF-RG*Learning to reproduce gesturesind CF-LIF‘Learning important features of a task”
and develops in synergy with workpackage WP43up-goals extraction and metrics of im-
itation performance}) by (1) providing a broad theoretical and practical syst@mscientific
framework from which to select what aspects of behaviountitate goal and sub-goal met-
rics for states, actions and effetping beyond the current state-of-the-art, and (2) bydaoxg

a multi-targetable architecture which allows the specdmtiires extracted from human demon-
strations to be imitated on different platforms. The worélso relevant to one of thBEOGNIRON
key-experiments, KE3Learning Skills and Tasks”

6.1 CF-RG: Learning to Reproduce Gestures

The robotic companion icOGNIRONWwill have to be able to replicate a demonstrated task by its
user (imitate), although its embodiment and affordancdlstfier from those of a human. The
work presented in this report is focused on addressingdhespondence problem imitation
(see section 4) and the questiorhofw to imitate(see section 3.1, page 5).

The JABBERWOCKY system presented in section 7 uses captured data from a hdenaon-
strating a task and given metrics and sub-goals, providds-platform targeted solutions for
the correspondence problem. These solutions can be cedvatb command actions that mul-
tiple imitator robotic platforms (currently in simulatianly, in the future extended to include
hardware) can execute to achieve a successful imitatidmeafask, depending on the particular
imitator's embodiment and context.

6.2 CF-LIF: Learning Important Features of a Task

In order to perform initial experiments with the current ieypentation of thedABBERWOCKY
system (described in section 7), a series of metrics is defigee section 8) that aggvento
the imitating agents for matching the demonstration behavaspects. These defined metrics
also contribute towards a characterization ofspace of metrigghat will be useful in guiding
various types of robotic imitation and social learning fraoman demonstrators.

In the future, results from WP4.1Jub-goals extraction and metrics of imitation performahy
will be used to allow the imitating agents to learn what nosttio use (and also how to extract
sub-goals) by observing the demonstration by the wgka( to imitaté.

6.3 KES3: Learning Skills and Tasks

The key-experimentearning Skills and Taskstresses the learning and reasoning capabilities
for the robot to acquire knowledge about goals and taskshéturrent stage it is planned to
demonstrate and assess the following skills which are imefeed on a robot platform:



e Learning goals from observations (RA4, RA5, RAB).
e Reproduction of the goal for arbitrary starting conditigR®\4, RAG6).

The work presented in this report is relevant to KE3 scripgarning Skills “Arranging and
interacting with objects’” The script stresses the robot’s ability to learn from imipliimitation
learning) and explicit (verbal interaction) teaching, aenvisioned as follows: The robot learns
new skills to manipulate objects and, by so doing, it learngw task. The robot will watch a
human demonstrator performing a task of manipulating sdojects. The demonstration will be
repeated several times. Each demonstration will be slighfierent from the others. The order
that the objects are manipulated may change, as well asl#teegositions and displacements
of the objects. The absolute position of the objects may earyvell. While watching the
demonstrations, the robot will learn the invariants of thgkt(relative position and orientation
of the objects with respect to one another) and new skillk siscobject-actions relations (how
to grip an object). Once the demonstrations are finishedrdhet will try to reproduce the
task. While doing so, the robot might query the user if somaalestration were ambiguous and
its choice is non deterministic. The user might stop andembrverbally the robot during the
reproduction, if the robot makes important mistakes.

As the embodiment of the human user and the robotic compaviibme dissimilar, acorrespon-
dence problenmust be solved, defined by the imitator's embodiment, thegad granularity,
and the metrics used to match the behaviour aspects. Eotsnsi theJABBERWOCKY system
presented in section 7 could be used to generate action codsttzat a robotic companion could
use to imitate the tasks demonstrated by a human user. Si@celotic platform to be used in
the COGNIRON KE3 is not yet fixed and also for maximum applicability, WP4&s adopted
a generic approach to the correspondence problem, taggetiritiple different potential plat-
forms. The corresponding solutions produced by the systenbe targeted to multiple robotic
platforms and adapt to arbitrary starting conditions.



7 Functional System Architecture

This section presents theBBERWOCKY system developed for thBOGNIRON project, address-
ing thecorrespondence problem imitation (see section 4). The design of thieBBERWOCKY
system is informed by theLICE framework (see section 5).

7.1 System Overview

The JABBERWOCKY system uses captured data from a human demonstrator tcateeia@pro-
priate action commands that can be targeted for varioug/aodtand hardware platforms. These
actions allow the imitating agent to achieve correspondictgpns statesandeffects depending

on the (relevant to the demonstrated task and context) eceeand granularity (provided by a
what to imitateand sub-goal extractioomodule), embodiment restrictions and constraints (im-
posed by the targeted imitator platform), and possiblyedéht initial state of the objects in the
environment (see Figure 2).

The corresponding actions, states and effects as perfdogndte imitator can also be captured
and used as a demonstration for another imitating ageotyialy for a form of cultural trans-
mission.

The system bears some similarity to the one presented iniyidshi et al., 1994], but with the
main differences that it can usey given metric and granularity and is designed to be able to
generate action commands targeted for a variety of plagpbwoth in software and hardware to
match different behaviour aspects and achieve varioustypsocial learning.

The JABBERWOCKY implementation described in this report and used for theergents (see
section 9) was implemented using tBevarm simulation systéngcoded in Obj-C) and MAT-
LAB.

The targeted imitator platforms used so far were implenteated simulated using Webdts

the Xanimhumanoid robot simulator is also under consideration.

7.2 Demonstrator (Model Agent)

The system uses captured data from a human demonstratorderhenstrated behaviour is
captured using motion sensors (Polhemus LIBERT Ynotion capture system). By attaching
the motion sensors on the arms, hands and torso of the husamlleas on the objects that the
demonstrator is manipulating, we can obtainalegons(e.g. hand movements, gesturesates
(e.g. arm and body postures) aeffiects(e.g. positioning, displacement, rotation of objects in
the workspace) of the demonstrator.

7.2.1 The Polhemus LIBERTY™ Motion Capture System

The motion capture system used is the LIBERTY 240/8 with esgimsor channels. It has 240
Hz update rate per sensor (simultaneous samples) and 3c3atsecy. The resolution is 0.038

®Swarm is a software package for multi-agent simulation shgiex systems. The official homepage of the
Swarm Development Group can be foundhat p: / / wi ki . swar m or g.
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Figure 2: The JABBERWOCKY system architecture. Using data captured from a human and
given appropriate metrics and sub-goal granularity, théistarget system can produce action
command sequences that when executed by a software or hardg@ant can achieve corre-
sponding actions, states and/or effects. The correspgraditions, states and effects as demon-
strated by the imitator can also be captured and used as and&admon for another imitating
agent. Differently embodied and constrained target sysiemarious contexts need to be sup-
ported.

mm at 30 cm range).0012° orientation. The static accuracy is 0.08 cm RMS for X, Y or Z
position; 0.15° RMS for sensor orientation. The range is 90 cm at above spaftiifns, with
useful operation in excess of 180 cm (the range used in theriexents was typically 50 cm).
The LIBERTY unit is connected to a Linux operating PC via theBJ/O port. The data format
used is ASCII in metric units. Depending on the experimenia) 1 to 8 sensors can be used.

7.3 Imitator (Target Platform)

The system is addressing the correspondence problem gamdirly embodied imitators, so the
how to imitatemodule produces action commands that can be used by mudiffdeent target
platforms as imitator agents, both in simulation (softyamed hardware (robots).

Each particular target platform will pose different embudnt restrictions and constraints to
the actions, states and effects it can achieve, and evntadahe quality and character of the
imitation.

The demonstrator and the imitator might share the same wacksor they might operate in dif-
ferent ones. Even in the same workspace, unless the objatisgents positions are arranged
back into the same initial configuration before the imitatbehaviour, the context will be differ-
ent and the imitator therefore has to take that into conata®r when imitating.

Once the imitator performs the actions using the same (oesponding) objects in its workspace,
its actions, states and effects could also be captured adiassa demonstration for another
agent, allowing for a form ofultural transmission



7.3.1 The Webot$V Simulator

The Webots mobile robotics simulation software providesrsisvith a rapid prototyping en-
vironment for modelling, programming and simulating melibbots. The included robot li-
braries enable users to transfer their control programsaimyrcommercially available real mo-
bile robots (including Alb@, g Mlndstormz@ Khepere@ Koald® and Hewsso@)
[Michel, 2004].

For WP4.2, the Webots platform was used to implement sinagtof two different target imi-
tator platforms (see figures 3 and 4) and described in se@tfn

e Multiple mobile robots, each corresponding to one of the imaated objects (described
in section 9.4.1).

e A robotic manipulator arranging the corresponding objédéscribed in section 9.4.2).

7.3.2 The Xanim Simulator

Another possible target platform evaluated JaBBERWOCKY is the Xanimsimulator created
by Stefan Schaal [Schaal, 2000§animis a dynamic simulation of the 30 degrees of freedom
humanoid roboDB, located at the Advanced Telecommunication Researchiutes{iATR) in
Kyoto (see figure 5).

Substantial extension of the physical modeling of objentstaeir manipulation environment in
Xanimwould be required to exploit the extent of effect matchingvravailable withJABBER-
WOCKY, although this limitation does not preclude its possible fas state and action imitation
of a (stationary) human (e.g. see [Billard et al., 2004, i@aliand Billard, 2004]).

7.4 \What to | mitate Module

Thewhat to imitatemodule will use the captured demonstration data to extygatcgriate sub-
goals (granularity) and also discover what metrics mustsee to capture the appropriate aspects
of the particular demonstration.

As noted in section 3.1, page 4, the questiomwbft to imitate is addressed by WP4.1. Cur-
rently, both metrics and the sub-goal granularity are giesrthe results from WP4.1 are not yet
available to be integrated in the implemented system.

So far, the work on WP4.2 has concentrated on solving theespondence problem for the
effectsaaspect of the demonstrated behaviour, that is the manipuolatobjects in the workspace.
Several differeneffectmetrics have been defined (see section 8) that are used irfgberaents
presented in this report. In the future the work will be extethto consider thstateandaction
aspects of a demonstration.

In the current implementation of tleBBERWOCKY system, the sub-goal granularity is given by
finding thecritical pointsin the trajectories of the manipulated objects. A criticain occurs
when the direction of the captured trajectory and/or therdation of an object changes by more
than a certain threshold.
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Figure 3: The three robots as objects platform. This platform (described in detail in section
9.4.1) is implemented and simulated using Webots. Each (oda, green and blue) corresponds
to an object from the demonstrator’s workspace (accordinige color), and leaves a trail to help

visualizing the imitative behaviour trajectory.

Figure 4:The manipulator and three objects platform. This platform (described in detail in sec-
tion 9.4.2) is implemented and simulated using Webots. Taeipulator (yellow) is positioned
above the workspace and able to move and rotate the threedalbjects (in this case, same size
as the corresponding ones manipulated by the demonstrdtben moved, each object leaves a
colored trail to help visualize the imitative behavioujécory.
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Figure 5:The Xanim simulator.

7.5 Howto I mitate Module

The how to imitatemodule uses the captured data from the demonstration, ttrecsnand the
sub-goal granularity discovered by thevhat to imitatemodule to produce a sequence of action
commands for an agent to execute and imitate. These acttomaods are made target specific
by taking into account the particular embodiment, affoadanand restrictions of the target imi-
tator agent, and also contextual information (includingithtial state of) for both the agent and
the environment.

Concentrating on theffectsaspect of the demonstrated behaviour to be imitated only, an
embodiment-independent solution to the corresponderat@dgm can be found, taking into ac-
count theeffectmetrics and the sub-goal granularity. For example conadenman opening
a cupboard, removing an object, closing the cupboard arzngldhe object on a table. This
sequence of events can be achieved by agents of varying emérad, ignoringstateaspects
like e.g. which hand was used to open the cupboard or how tjeetolvas held (or grasped) or
evenactionaspects like e.g. the way the human walked (gait) acrossothra.r Any agent that
can open the cupboard, transport the object and place iteotalile can potentially imitate the
effects of this particular demonstration. But for this o to be useful to an imitating robotic
companion, it must be converted to action commands thatitd@ccount its embodiment and
also the context (e.g. the cupboard is already open, thetisjéocated on a different shelf in
the cupboard, the table is in another room), so that the tamiteses its motors and actuators to
achieve the desired effects of the task.

The choice of initially concentrating agffectss guided by the assumption that the manipulation
of objects will be the most important aspect of the demotedraehaviours that users would like

101n the current system implementation both the metrics aadtib-goal granularity (critical points) are given.
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a robotic companion to imitate in a home environment (eighiag objects or arranging them
in particular ways). In the future, the work will be extendeatonsider also thstateandaction
aspects of a demonstration.
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8 Metrics

To evaluate how similar its actions, states and effectoateestmodel’s actions, states and effects,
an imitator agent uses different metrics (addressindghtive to evaluate the imitative behaviour
guestion, see section 3.1, page 3.1). When the value of thiee(sgused is minimised, then that
imitator action, state or effect (or a sequence of) is “ojted”, i.e. is the most similar to the
perceived model’s behaviour.

As we concentrate on the effect aspect of the agent’s belattte metrics defined and used
in this work will be variouseffect metricsevaluating the similarity between the effects on the
environment of the model and the imitator. We do not pregartthsider the state or the actions
aspects of the a model’s behaviour.

The reason for this prioritization is that in general, uslédse embodiments are “very similar”
(i.e. a humanoid robot and a human), although an action ¢e st&tric can be defined and
used, the actions or states that minimize it will be qualiedy very different to those of the
model. For example consider a mobile robot on wheels, algmfa single arm equipped with
a gripper, as an imitator and a human as a model. This robbperhaps be able to achieve
similar arm postures (states) and perform similar gest{gesons) to the human, but only the
ones that require a single arm. It will be able to move to thmes@osition in a room (state)
but the way it reaches the destination (action, using itsalgewill differ to that of the human
(action, walking). Still, this robot is able to arrange andmpulate objects (effects) but will
probably achieve them going through a very different seqe@ri states and actions. Trying to
force the robot to e.g. use a specific way to grasp an obje@nwhother way is possible (and
perhaps more efficient) can be restricting depending oraitSqular embodiment and access to
affordances. In future work, we will consider states andrlactions.

8.1 Effect Metrics

Towards a characterization of tepace of effect metrica/e are exploring absolute/relative angle
and displacement aspects and focus on the overall arramgeme trajectory of manipulated
objects. Looking at how objects can be manipulated (in adgestructive and combining way),
there are two different perspectives: how the object waslalted and how it was rotated. The
displacement can be either relative or absolute relateldetdinal position in the workspace, or
relative to the other objects within the workspace. Thetiaiecan be also be relative or absolute
related to the final orientation of the object. To fully delserthe manipulation of an object, both
displacement and angular effect aspects must be consid&edconsider these aspects in a
two-dimensional workspace, such as a table surface.

If the initial configuration of the (same or correspondinbjexts is the ‘same’ for both the model
and the imitator agents, then there is no observable digimbetween using either the absolute
and relative displacement/rotation or the relative positif the objects are manipulated in the
same order). But if the agents are active in a different wmaike starting from a different initial
configuration of objects, or the timing and the order of thenipalations is not the same, it
will be impossible to satisfy simultaneously all the aspectherefore choosing to satisfy one
particular aspect will result in a qualitatively differeeffect than if another one was chosen,
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Figure 6: Somedisplacement (left) and angular metrics (right). To evaluate the similarity
between object displacements, tetive displacemenabsolute positiormndrelative position
effect metrics can be used. To evaluate the similarity betwsbject rotations, thetation and
orientationeffect metrics can be used. The second row shows the way thesponding object
(in a different workspace) needs to be moved or rotated bgngator to match the corresponding
effects. The grey triangles are superimposed to show tihahérelative positioneffect metric,
the relative final positions of the objects are the same.

but still satisfy those similarity quantitative criteridhis is shown in the experimental results
presented and discussed in section 9.

8.1.1 Displacement Effect Metrics

The model is moving an object from positidf,, to position.X}, on the workspace, achieving

/
an object displacememk X, = X, — Xy, whereX,, = liM 1 X, = ;{W 1 and
M M

/ J—
AXy =Xy — Xy = [ Zﬁ” ‘;CM ] The imitator should move the same (or corresponding)
M — YM

object from positionX; to positionX'; on the workspace, with a displacemenk’; = X; — Xy,
such that a displacement metric is minimised (see Fig. 9, lef

Relative Displacement Effect Metric is minimized ifAX; = AX,,; and

Tr x — TMm IL‘]"‘?E'/ — TMpm
Xy =X+ AXy = + | = " :
! ! M _yI] [?J?w—yM Yr + Yy — Ym

Absolute Displacement Effect Metric is minimized if X7 = X, and

[ —
AX; =X — X, =| "M ",
! M ! _3/?»4—3/11




Relative Position Effect Metric This metric is minimized if the object is moved to a similar
position relative to other objects in the workspace. Télative positioneffect metric is
defined here for three objects in the workspace.

The center of the manipulated object is defined4as- [ iA , and the centers of the
A
other two objects a® = :;B andC = ?;C . The imitator must move the same
B c

(or corresponding) object to form a triangleBC so that it is the “same” as the triangle
formed by the model, i.e. the anglésiB, ABC and BC'A are equal. The triangle sides
AB, BC andC A can be equal only if the objects start from the same initiafigoiration
for both agents and are manipulated in the same order, satmkyquality of the angles
can be used in genetdal

Therelative positioreffect metric is minimized if

X, =AandAX; = A— X, = [“_“’f].
Ya — Y1

8.1.2 Angular Effect Metrics

The model is rotating an object from orientatiéy to orientatiory,, on the workspace, with a
rotationAd,, = 0, — 0. The imitator should rotate the same (or correspondinggaitffom
orientationd; to orientationd; on the workspace, with a rotatiahd; = 6, — 6;, such that a
displacement metric is minimised (see Fig. 6, right).

Rotation Effect Metric is minimized if A8; = Afy, andd; = 0; + Ay,

Orientation Effect Metric is minimized if¢; = 6}, andAd; = 0}, — 0.

(1—(:052(ABCM)) XB_Ci
(1—cos2(CABy))

UGiven CAB,;, ABCy;, BC A, andBC, we can find the other two sidesC; = \/

— 5 BC, A A 3 3 >
andAB; = , | 1= (BOAwBT, g satisfy the equalitie€ AB; = CABy, ABC; = ABCy; andBCA; =
(1—cos2(CABw))

BCAy.
Assuming that side BC; lies on the (0,+o00) x-axis with points B = [8] and
C = {lBgfl] corresponding to By and C;, we can then find a pointA =
BC; AT, +AB;
{ \/(7%I+EI7E1)x(7%17E1+142X_]>;$1(7%1+E1+E1)x(%I+EI+EI) ] corresponding o Ay,
2xBC}

such that the equalitiedB = AB;, BC = BC; andC.A = C' A; are satisfied.

To find A; we need to rotate and transladen respect to the actual co-ordinateg$f = [ 2’3 } andCr = { zc }
B C

. - , |l ra | cos¢p  sing Tp . 1 (yo—ys
in the imitator’s workspaced = { " } = { _sing cosé ] x A+ { . ],Whereqbtcm (—chzs)'



8.1.3 Other Effect Metrics

Depending on the initial configuration of the correspondbgects in the imitator’'s workspace,
or the particular task that the imitator would like to acl@eit might be desirable to use also
other metrics that take into account mirror symmetry, batkigponal and angular, to features of
the environment or other agents. For example:

Mirror Displacement Effect Metric is minimized ifAX; = —AX,, and

Yr Yv — Ym yr — Yy +ym

Mirror Rotation Effect Metric  is minimized if AG; = —A#,, andf; = 0; — Afy,.

Parallel Orientation Effect Metric is minimized if¢; = ¢ andAd; = ¢ — 6;, whered is the
orientation of a feature in the environment (e.g. one edgbetable). If the features in
the workspace of the imitator are the same as the model’s,ithe ¢, and this metric
becomes equivalent to tloeientation effect metric

8.2 Combinations of Effect Metrics

To evaluate both the movement and the orientation of an glijeth metric types must be used.
To match the observed effect, the (corresponding) objesti:iéo be moved on the workspace
according to the displacement given by the displacemeatefetric and rotated according to
the angular effect metric used.

A weighted combination of more than one displacement mesaicalso be used, by averaging
Al‘i
Ay;
displacement that minimises a displacement effect mgtandw;, ... ,w, are the weights of the
n displacement effect metrics to be combined, the displaoéthat minimizes this composite

|AX] % cos(¢) B \/ﬁ
|AX]| x sin(p) Where|AX| = wy x Azy™ + Ay "+
W X Az, + Ay,? andg = wy x tan (84) + . 4wy x tan~t ().

the displacement vectors that minimise each metric. Fomela, if AX, = is the

metric is then given bA X =




9 Experimental Setup

9.1 Demonstrated Task

In the work described in this report, the demonstrated taskists of three block objects (colored
red, green and blue) arranged in a 2D workspace surface byarhwho acts as the demonstra-
tor. The workspace is a square grid 50 cm by 50 cm, and the sizks objects are: 10 cm by 8
cm (red) and 8 cm by 5 cm (green and blue).

The current work focuses on te&ectsaspect of the demonstrated behaviour, so only the position
and orientation of the objects as they are manipulated bgieheonstrator are captured, omitting
the demonstrator’s actions (arm movements) and statey (bosture). Using the Polhemus
LIBERTY™ motion capture system (described in section 7.2.1), a sémnsttached on top of
each object, giving the position of the object’s center dad the object’s orientation relative to
the origin.

In ongoing work, three (or more) additional sensors will Ised; one attached to the human
torso and one at each hand, providing additional infornrmaéibout the demonstrator’s states
and actions. Taking into account te@atesaspect would help theABBERWOCKY system solve
possible ambiguities when producing the correspondingstfor imitation. For example, a
humanoid robot imitator, considering the states of the destrator would obtain possibly useful
information e.g. which hand to use (left or right) to reaclolject from its current configuration,
based on the choice of hand used by the demonstfator

In section 10, theABBERWOCKY system is evaluated for combinations of effect metrics am tw
target platforms when presented with human demonstrategouriations of objects.

9.2 Realization of theWhat to I mitate Module

In the current implementation of thieBBERWOCKY system the metrics and the sub-goal granu-
larity are given, instead of discovered by the imitator dgéased on the observed demonstrated
task. Thewhat to imitatemodule provides a choice of metrics and granularity basethen
task and context of the demonstration, although there nmghalways be a unique, “correct”,
choice. Here, the various possible metrics and granulaatye been selected in advance, and
as will be shown, depending on the choice, the charactereafebulting matchedffectscan be
very different.

9.2.1 Sub-goal Granularity

For each demonstration the system captures a total of up ftmes3, each containing the

position and orientation of the objects. The duration oftdsk will be usually less than that, so
duplicate frames (where no motion or rotation occurs) mestdmoved, and the critical points
in the object trajectories found. Going through the framreslaoking at position and orientation

2Assuming that the demonstrator uses her/his embodimemhigeamingful way and does not complicate the task
unnecessarily.
13The total duration of the capture will be approximately Hskc.



data for each object, a critical point for an object is a framiere the direction of the motion
or the orientation of that object changes more that a cettmashold. The critical points will
usually occur at different frames for each object during deenonstration. After the critical
points for each object are found, they are ‘synchronizedthst if one or more objects has a
critical point at a certain frame, then this frame is alsoiica point for the rest of the objects.
The displacement and rotational information containecha dritical point frames discovered
in this way will be used by theABBERWOCKY system as the sub-goal granularity for imitating
the task. By changing the thresholds (one for the directimhane for the rotation) we can get
different levels of granularity ranging from fine to coardepending on how many critical points
are generated.

This is a very simplistic, yet sufficient for our initial expments, way to define the sub-goal
granularity of the demonstration in a generic way. In theifeit other methods resulting from
the research in WP4.1 will replace the way the sub-goalsxraated from a captured demon-
stration.

9.2.2 Metrics

Combinations oflisplacemenandangulareffect metrics (defined in section 8) are used together
with the sub-goal granularity to define a correspondencelenoclass (see table 2 in section 4.1)
that an imitator must solve in order to imitate successfully

The choice okffectmetrics to use is currently given to theBBERWOCKY system by a human
user, and not discovered by the imitator agents. In thedytlgorithms and methods developed
in WP4.2 will be integrated, allowing for automatic discoy®f appropriate metrics for each
demonstrated task.

9.3 Realization of theHow to I mitate Module

Thehow to imitatemodule considers the giverffectmetrics and sub-goal granularity, together
with the (possible dissimilar) initial configuration of tbbjects in the imitator's workspace (also
given) to produce initially an embodiment-independentespondence solution (since only the
effectsaspect are considered).

To discover this correspondence, ta8BERWOCKY system currently uses a simple simulation
of the 2D workspace that can handle various ‘block’ objectsimg and rotating around, ac-
counting for object collisions and workspace confines. Bimsulation can replay the captured
model data at a given granularity, displaying the trajgctord orientation of the objects as they
move and rotate on the workspace, from the initial configamnatio the final captured frame. In
parallel, starting from a different initial configuratior the same (or different) corresponding
objects on the imitator’'s workspace, the simulation predue sequence of changes to displace-
ment and rotation for each object, that minimize the givéeotimetrics.

For example if the effect metric used is tleative displacemergffect metric, and the demon-
strator moved an object 10 cm to the right, then in order tammize the metric, the corresponding
object in the imitator’'s workspace must be also moved 10 ctheaight. But some displace-
ments or rotations, although minimizing the metric, migatibvalid because the path or final



position is occupied by other objects or agents, e.g. if ireesponding object is less than 10
cm away from the right edge of the workspace (because thalipisition was different), the
entire move cannot be performed. Ti@w to imitatemodule will then have to discover an alter-
native way in the given context (including other agentstistar dynamic obstacles) to achieve
the sameeffectsaccording to the metric. In this case it might be acceptablaadve the object
up to the right edge and then continue the rest of the imédighaviour. In another context, it
might be preferable not to move the object at all. This cantxnformation should be ideally
provided by thewhat to imitatemodule, based on observations of the currently demondtrate
task and not pre-defined. In the curreRBBERWOCKY implementation, the system attempts to
move (or rotate) the objects until they reach an obstaclesthan simple 2D object collision de-
tection), and then stop, instead of considering anothér feateach the position (and/or achieve
the orientation) that minimizes (if possible) the metrieds

In each case, very different correspondences may resuittinggng to match different aspects of
the demonstration. In the experiments presented in thmtrépee sections 10.1 and 10.2), the
use of differenteffectmetrics is shown to result in qualitatively different intitee behaviours.
The confines of the workspace and the obstruction of the patither objects can also influence
the imitative behaviour.

To imitate and achieve similaffectsas the model, an imitator agent will have to adopt this
(largely) embodiment-independent correspondence soltdimove and rotate the objects, using
a generated sequence of action command instructions. Hedsae commands will be targeted
to multiple imitator platforms, taking into account the esdiment constraints and restrictions
of imitator embodiments.

9.4 Targeted Imitator Platforms

After generating the embodiment-independent effect spwadence solutions for the corre-
sponding objects in the imitator's workspace, ta8BERWOCKY system will convert each of
them to a sequence of action commands to be executed by raumiipator platforms.

Two such targeted platforms are used in the current readizaf the system, both implemented
using the Webot$' robot simulation software.

9.4.1 Three Robots As Objects

In the first imitator platform, the imitator’s workspace ¢aims no objects. Instead, the imitator is
‘embodied’ as three mobile robots, each corresponding écobthe objects manipulated by the
demonstrator. Each robot is square 4cm by 4cm (so in this bas&les dissimilar demonstrator-
imitator embodiments, there is also dissimilar object egppondence, mapping the objects to
mobile robots). The robots can follow the individual traggces of the objects as arranged by
the demonstrator, but cannot match the orientation (whoging) because they are differential
wheel robots. Therefore trengular effect aspect will be ignored when they imitate, matching
only thedisplacemengffect aspect.

In the simulation, as the robots move around the workspaes, leave behind a colored trail
(of same color as themselves and their corresponding abjexthelp visualize the imitated



trajectories (see figure 3).

To convert the effect correspondences into a sequenceiohactmmands for this target imitator
platform, each robot is given a sequence of way-points, ridipg on its corresponding object.
For each of these way-points, the robot must use its diftedenheel embodiment to move in a
straight line up to that position in the workspace, and ataching the target position, move on
to the next.

All three objects will have the same number of critical pei(dee section 9.2, above) and as a
result the number of way-points will be the safhfor each robot. But the time it takes each
robot to achieve its current target position will not be tame, depending on the distance it has
to travel. This can result in a ‘synchronization’ probleime robots may either go through their
sequence of way-points ignoring what the other robots anegd@nless they are obstructing
their way) or the robots can try to synchronize their imit@tbehaviour by waiting until all three
have reached their current target positions before mowrthe next one. In the experiments
presented in this report, the robots are synchronized.

9.4.2 Manipulator and Three Objects

In the second targeted imitator platform, the imitator'skgpace contains three objects, of the
same size and color as the corresponding objects in the dggrator’'s workspace. The imitator
is embodied as a single arm manipulator, positioned abav&trkspace and able to pick-up,
move and rotate the three objects. This embodiment, althdisgimilar to the one of the human
demonstrator, is nevertheless able to match daplacemenandangular effect aspects of the
demonstration.

As the objects are moved (and rotated) around the workspatteebmanipulator in the simula-
tion, they leave behind a colored trail (of same color as Sewes) to help visualize the imitated
trajectories. The manipulator is shown as a vertical yeliglinder mounted at the end of a bar
positioned above the workspace (see figure 4).

The action sequence produced by tABBERWOCKY system will consist of a continuous path
with way-points above the current (and future) positionghef objects. When the manipulator
is above an object that must be moved, the manipulator piaks, ithen moves (together with
the object) to the target position and places the object deviaile also, if required, rotating it),
before continuing to the next object.

To match theeffectsat each critical point, the order the manipulator approa¢he objects is
the same (red object, green, blue). If no displacement atiawt is required for an object during
each of these turns, that object is ignored, simplifyingrtfanipulator’s path. If more than one
objects were moved at the same time during the demonstr@yatme human using both hands)
resulting in a sequence of critical points, this imitatol wnly be able to match this by moving
(and/or rotating) each object in turn at each critical pbiefiore continuing to the next, as it has
a single manipulator.

YAlthough there probably will be duplicates within the seqee, indicating that the object has to be still.
5For this platform, the path will be closed, starting and egdat a position at the upper left corner of the
workspace.



Deliverable D4.2.1
COGNIRON 31/12/2004

FP6-1ST-002020 o .
Revision final

10 Evaluation of Experiments

Two experimental runs (each using a different captured aestnation of an object arrangement
task by a human) will be discussed in this report. In eachatter finding the critical points, a
combination of different effect metrics was used (eithergameeffectmetric for all the objects
or a different one for each object) together with dissimitéial configuration of the objects (for
the imitator's workspace) to define several different cgpmndence problems. TheBBER-
WOCKY SYSTEM produced corresponding action commands that minimizecffieet metrics
in each case, targeted at the two imitator platforms desdrdbove in section 9.4. Using these
action commands, the imitator agents were able to imitaegpropriate effect aspects of the
demonstration and the resulting imitative behaviours weapured from the Webots simulation.
Two human demonstrations are discussed here and imitateatbmarget platforms with various
effect metrics guiding what aspects to match. (The secoperarental run is shown in the
demonstration video - see Appendix A).

The results shown provide examples of ta8BERWOCKY system producing solutions to the
correspondence problefar multiple targeted platforms and also illustrate thelgatve differ-
ences resulting from using differeeffectmetrics.

Demonstrated Trajectory (1000 frames) Critical Points (56 points)

0.1f -m Tz 01r "~

0.2F : 0.2

Z axis
Z axis

0.3 0.3

0.4 0.4

05 i i i i i 0.5 i i i i i
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

X axis X axis

Figure 7:First captured demonstration (left) and the extracted critical points (right). The
colors (red, green and blue) indicate the three differeqeaib. The dotted outlines indicate
the initial position and orientation of the objects, whiketsolid thick outline the final. For the
demonstration data, the intermediate object’s positiah @ientation is shown with solid thin
outlines, linearly scaled (at intervals equal to one teritin@ overall trajectory only, for clarity)
to indicate the direction of the movement. For the criticaings, each object’s position and
orientation is shown at every critical point, again lingataled.
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Initial Object Configurations

05 ‘ ‘ ‘ ‘ ;
0 0.1 0.2 0.3 0.4 0.5
X axis

Figure 8: An example of dissimilar initial object positions. The dotted outlines indicate the
initial position and orientation of the objects in the derstator's workspace (from the demon-
stration shown in figure 7, left) and the solid outlines thisgonilar) initial configuration of the
objects in the imitator’'s workspace.

The first human demonstration is visualized in figure 7. A hamser moved (and rotated) the
red object downwards, then the green object to the right anadlyfithe blue object upwards in
his workspace. The captured data are shown in figure 7, lefindthe method described in
section 9.2.1, the critical points were found and are shawigure 7, right.

The objects in the imitator’'s workspace need not have theesaitial position and orientation.
Figure 8 shows the initial configuration in the imitator'snkspace (solid outlines) compared to
the initial configuration in the demonstrator’s workspaget{ed outlines). Relative to the initial
object configuration in the demonstrator’s workspace, ¢égeobject is translated to the right and
rotated by 90, the green object is translated downwards and rotated hyad the blue object
is translated sideways up and to the left, also rotatedtfigh

Using therelative displacemergffect metric, theJABBERWOCKY system produces correspond-
ing action commands that are visualized in figure 9 (left)tf@three robots as objecimitator
platform. Each robot (the different colors indicate thesabjcorrespondence) must move along
the way-points (indicated by the dots) from its initial gasn (dotted outline) to the final position
(solid outline). The initial and final positions are visu&d in the figures as circles (of relative
size to the robots) to show that the orientation of the roimit®t considered. Since the initial
positions are different, but the matched displacementg beithe same (due to the metric), the
robots should move with the resulting paths displaced aicgly (red to the right, green down-
wards and blue to the left and up). The corresponding acaomperformed by the robots in the
Webots simulation environment and the resulting imitabed@aviour is captured and shown in
figure 9 (right).

Using therelative displacemenand rotation effect metrics, theJABBERWOCKY system also
produces the corresponding action commands shown in figukeft) for themanipulator and



Corresponding Actions (Three Robots) Imitation (Three Robots as Objects)
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Figure 9: An example of corresponding action commands for thehree robots as objects
imitator platform (left) and the resulting imitative behav iour (right). Using the critical points
shown in figure 7, starting from the initial positions showrigure 8, and minimizing theelative
displacemeneffect metric, each of the robots must move along the waptp@hown (left). The
initial (dotted outline) and final (solid outline) positisare shown as circles, indicating that the
orientation of the robots is not considered (the actual t®hoe square, but of equivalent size).
Each way-pointis indicated as a dot. The robots then perérimitative behaviour (in Webots)
and the captured results from the simulation are shown inighé plot.
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Figure 10: An example of corresponding action commands for thenanipulator and three
objectsimitator platform (left) and the resulting imitative behav iour (right). Using the criti-
cal points shown in figure 7, starting from the initial pasits shown in figure 8, and minimizing
therelative displacemerdndrotation effect metrics, the manipulator must follow the continu-
ous closed path (starting and ending at the left top cornéneofvorkspace) shown as a dotted
line (left). The line in drawn using a gray to black color geat to indicate the direction of the
path. When reaching an object, the orientation that thectlbpeist be rotated to is shown by a
small arrow. The manipulator then performs an imitativeawebur (in Webots) and the captured
results from the simulation are shown in the right plot.



three objectamitator platform. The path of the manipulator is shown aso#et! line (drawn
using a gray to black color gradient to indicate the direggtiovith way-points indicated as dots.
Since this platform can also match thagular effect aspects, the orientation that the objects
should have at each way-point is indicated by an arrow. Thapoéator starts from, and returns
back to a position in the top left corner after all tefectshave been achieved. The object
displacements will be similar to the ones shown in figure @hhe paths translated according
to the dissimilar initial object positions. The objects lwdtate by the same amount as in the
captured demonstration (due to the metric used) but willmatch the same orientation. For
example, the red object in the imitator’'s workspace stdrts raght angle relative to its initial
orientation in the demonstrator’s workspace. As a redudtfinal (and intermediate) orientation
during the imitative behaviour will also be at a right angd&ative to the captured demonstration.



10.1 First Experimental Run: Same Effect Metrics Used for Al Objects

To illustrate the differenéffectsresulting from the different correspondence problems deflyy
the choice of metrics, we produced action commands usingABBERWOCKY system and we
captured the imitative behaviours simulated in the twodted platforms.

Corresponding Actions (Three Robots) Corresponding Actions (Three Robots) Corresponding Actions (Three Robots)
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Figure 11: Corresponding action commands for thethree robots as objects imitator plat-
form (top row) and the resulting imitative behaviours (bottom row). Using the critical points
shown in figure 7, starting from the initial positions showrfigure 8, and minimizing thab-
solute displacemertteft column),relative displacementmiddle column) andelative position
(right column) effect metrics, each of the robots must mdeagthe way-points shown (top
row). In each case, the robots then perform an imitative \ieba(in Webots) and the captured
results from the simulation are shown in the bottom row.

The corresponding action commands and the resulting effeatn using each of the different
displacemengffect metrics (in each case the same metric is used foreabdltfects) are shown in
figure 11, for thethree robots as objecimitator platform. The captured demonstration, critical
points and initial imitator’s object configuration are shrow figures 7 and 8. The corresponding
effectsresulting from using theelative displacemergffect metric (figure 11, middle) were dis-
cussed in the previous subsection. Usingahsolute displacemeeffect metric (figure 11, left),
the robots must make an initial adjustment of their posgitmreach the corresponding object’s



initial position in the demonstrator's workspace. For thstrof the imitative behaviour, their
positions (and also their displacements) match precibelye of the corresponding objects from
the demonstration. But using tielative positioneffect metric (figure 11, right), results in qual-
itatively very different trajectories to the ones capturiévertheless, the robots move in such a
way to match the relative position effect aspect as the sparding objects in the demonstration.
The reason for this trajectory distortion is the dissimitatial object configuration.

The corresponding action commands and the effects regudiibm using combinations of each
of the differentdisplacemenandangular effect metrics (in each case the same metrics are used
for all the objects) are shown in figures 12 and 13 respegtivel the manipulator and three
objectsamitator platform. The captured demonstration, criticains and initial imitator’s object
configuration are shown in figures 7 and 8. The correspondapectories resulting from using
each of thedisplacementeffect metrics are similar the ones shown and discussedeatoov
the three robots as objectdut with the added aspect of the object’'s orientation. Witien
rotationeffect metric is combined with thgisplacemengffect metrics (figures 12 and 13, middle
columns), the orientation of the objects will be offset frtme initial object orientation as seen
in figure 8. When therientationeffect metric is combined with theéisplacemenéffect metrics
(figures 12 and 13, left columns), the orientation of the digjevill be initially corrected to align
with the object orientation as seen in figure 8, and for theatthe imitative behaviour it will
match orientation captured in the demonstration. Iangulareffect metric is used (figures 12
and 13, right columns), then the objects will not rotate btlating the imitative behaviour, and
will conserve their initial orientation.

If no displacemeneffect metric is used, then the objects will simply stayl stiltheir initial
positions or (if arangulareffect metric is used) spin around.
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Figure 12:Corresponding action commands for themanipulator and three objects imitator
platform. Using the critical points shown in figure 7, starting from thetial positions shown
in figure 8, and minimizing thabsolute displacemei(top row), relative displacemenimiddle
row), relative position(bottom row),orientation(right column) andotation (middle column)
effect metrics, the manipulator in each case must follonctir@ginuous closed path, moving and
rotating the objects accordingly. Note that in the left coly no angular effect metrics are used,
only displacement effect metrics.
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Figure 13:Resulting imitative behaviours using the corresponding aiton commands shown

in figure 12 for the manipulator and three objects imitator platform. Using the critical
points shown in figure 7, starting from the initial positi@town in figure 8, and minimizing the
absolute displacemeiitop row), relative displacemenimiddle row),relative position(bottom
row), orientation(right column) andotation (middle column) effect metrics, the manipulator in
each case performs an imitative behaviour (in Webots) ulmgorresponding action commands
shown in figure 12 and the captured results from the simulare shown. Note that in the left
column, no angular effect metrics are used, only displace¢ifect metrics.
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10.2 Second Experimental Run: Combination of Different Efect Metrics
for Each Object

In contrast to the experimental run presented and discussled previous subsection, where the

same metrics were used to match #fiectsof each object, in this subsection a different metric

will be used for each object.
This experimental run is also shown in the demonstratioawigee Appendix A).

Demonstrated Trajectory (1000 frames) Critical Points (6 points) Initial Object Configurations
0 0 0

Z axis
Z axis

02 o3 0.4 05 ~o 01 02 BCE 0.4 05 o 01 02 BCE
X axis X axis X axis

Figure 14:Second captured demonstration (left), extracted criticapoints (middle) and ini-
tial object configurations (right).

The demonstration that is used in this experimental runasvehn figure 14 (left). The human
demonstrator first moves the red object upwards, then trengrbject sideways to the right and
finally the blue object in such a way that in the last two posii, it forms first aight and then
anisosceledriangle (approximately) with the other two objects. Theical points are found
and shown in figure 14 (middle). The granularity is more ceanghis case compared to the first
demonstration, as a larger threshold (for direction changes used to define the critical points.
The initial position of the objects in the imitator’s worksge is shown in figure 14 (right). The
red object is offset sideways down and to the right, and teergobject upwards. The blue object
occupies the same initial position.

Three different combinations afisplacemeneffect metrics are used, shown in figures 15 and
16. Since the objects were not rotated by the demonstrai@ngular effect metrics were used.
First, the red object matches tabsolute displacemesffect metric, the green object thedative
displacemengffect metric and the blue object thedative positioreffect metric (shown in figures
15 and 16, left columns).

e The final position of the red object (that performs only a Brgove) will be the same as
one of the corresponding red object in the demonstratorikspace (due to the absolute
displacement metric).

e The green object will move sideways to the left, but the titmey is translated upwards
(due to the relative displacement metric).



e The blue object will move as to form firstrgght (when the red and green objects stop
moving) and finally ansoscelegriangle (due to the relative position metric). Because of
the other two objects movements in the early stage of theativét behaviour, the blue
object will also move (when at the same stage the correspgridue object remain still
in the demonstration), trying to preserve the relative jmss.

Secondly, the red object matches tedative displacemengffect metric, the green object the
relative displacemergffect metric and the blue object theative positioreffect metric (shown
in figures 15 and 16, middle columns).

e The red object will move a shorter distance, matching thedtary (translated) of the
corresponding red object in the demonstrator’s workspaiee {0 the relative displacement
metric).

e The green object will move as in the previous case.

e The blue object will again move to conserve the relative fomss and then form the two
triangles, but now due to the position of the red object édéht from to the previous case)
the trajectory will be different.

Thirdly, the red object matches thelative positioneffect metric, the green object tielative
displacemeneffect metric and the blue object theative displacemergffect metric (shown in
figures 15 and 16, right columns).

e The red object will move as to conserve its relative positmithe other two objects, re-
sulting in more than one moves (due to the relative positietria).

e The green object will again move as in the two previous cases.

e The blue object, starting from the same initial positionl] wiove using the same trajec-
tory as the corresponding blue object in the demonstratmikspace (due to the relative
displacement metric).

As a result of the particular combination of metrics and th#eo of the object displacements,
the sameight andisosceledriangles will not be formed in the last case as in the first.t®&o,
the choice of a metric will lead to matching of aspects asgediwith that particular metric, but
may or may not result in matching of other aspects.

10.3 Summary Evaluation

The experiments show the diverse character of differentessful imitative behaviours opti-
mized to match particular aspects of the effects of dematexirhuman manipulation of ob-
jects. Aspects captured by metrics fabbsolute displacementelative displacementelative
position rotation and orientationcould all successfully be matched. The results illustriage t
multi-platform targetability of theABBERWOCKY system to map human demonstrated manipu-
lations to matching robotics manipulations (in simulajiageneralizing to different initial object
configurations.
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Figure 15:Corresponding action commands for themanipulator and three objects imitator

platform (top row) and the resulting imitative behaviours (bottom row). Using the criti-
cal points shown in figure 14 (middle) and starting from thi#ahpositions shown in figure
14 (right), a combination of displacement effect metria$fédent for each object, see text for

details) are minimized. In each case, the manipulator tlegfopns an imitative behaviour (in
Webots) and the captured results from the simulation arensiom the bottom row.
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Figure 16:Corresponding action commands for thethree robots as objectsimitator platform
(top row) and the resulting imitative behaviours (bottom row). Using the critical points
shown in figure 14 (middle) and starting from the initial gasis shown in figure 14 (right),
a combination of displacement effect metrics (differemtdach object, see text for details) are
minimized. In each case, the robots then perform an imé&adt@haviour (in Webots) and the
captured results from the simulation are shown on the bottom
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11 Summary, Conclusions and Future Work

11.1 Summary

Qualitatively different kinds of social learning resulofn matching different combinations of
matchingactions statesandeffectsat different levels of granularity.

Metrics capture similarity of robot- and human-achieedféctson the environment, including
e.g. sequences in object manipulatistatesof the body; or effectoactions or dynamically
varying combinations of these aspects, in order to matchodstrator behaviour (where the
latter two aspects depend more strongly on details of rabbboeliment than the former). Metrics
do this by providing formal measures for the degree of matghietween two different effects,
states or actions. A choice of metrics and the granularitgrd@neswhat to imitate and guides
machine learning and solution of tkerrespondence probleme. allowing an imitator robot to
match appropriate features of the behaviour of (e.g. hurdamonstrator in order to socially
acquire skills or learn how to perform demonstrated tasks.

This report presents an initial characterization a$pmce of effect metric® use in guiding
various types of robotic imitation and social learning frabmman demonstrators.

A multitargetable systemuBBERWOCKY) has been developed that can be used with captured
motion data from a human demonstrator to solve the correBpgrproblem for an imitator
agent (in simulation), according to given effect metricd gnanularity. The system generates
high-level, largely embodiment-independent (as curyenilly the effectsaspect is considered)
solutions to the correspondence problem, which are theptedao a particular target imitator
can map sequences of observed effects of the demonstratisjects to its own repertoire of
actions as constrained by its own embodiment and by corgess(bly different initial configura-
tions of environment and manipulated objects). This worklgated in simulation experiments
(including a demo - see Appendix A) and documented in thisntep

11.2 Discussion and Conclusions

The experiments with the two target platforms show that ddpey on which metric is used to
match aspects of demonstrated behaviour, different ssitdesitative behaviours result.

The experimental results illustrate the multi-platformyt&tability of theJABBERWOCKY system

to map human demonstrated manipulations to matching r@botanipulations (in simulation),
generalizing to different initial object configurations.

Using the captured demonstrated behaviour and given a fiteckt enetric and granularity, it
is clear that the system will be able to generalize humaneshstnated arrangement of objects
across different starting object configurations. For examipr any initial configuration of ob-
jects in a table place-setting, using a previously dematexdrarrangement of the objects and
the absolute displacemerind orientationmetrics,JABBERWOCKY would be able to generate
appropriate actions that could be used by any imitator giatf(capable of moving and rotating
objects) to reproduce the observed arrangement.



11.3 Future Work

Building on results from WP4.1 and WP4.2, research on theacherization obpaces of metrics
and their exploitation will be advanced for use in guidingi@as types of robotic imitation and
social learning from human demonstrators.

Part of the future work on metrics will further document tipase ofeffectmetrics for largely
embodiment-independent imitation. This will provide a em@omprehensive characterization
of the scope of what it is possible to imitate, guiding codlediors in the design of task and
skill learning systems that employ robot programming by destration with a broadened, yet
constrained, scope and algorithmic and software tools tapcte the metrics and generate be-
havioural recipes that can be targeted to multiple, didammitator platforms.

Multi-platform targeted solutions for the correspondepazblem fiow to imitatg given metrics
and sub-goal structures will be developed further buildingVP4.2 results, by extending from
implemented simulation systems towards robotic targefqlas.

Work on the correspondence problem using theBERWOCKY system will allow an imitator
agent to learn how to reproduce gestures (states, actiods)lso simple manipulation of objects
(effects).

Work on the characterization of the space of metrics will thiel design of systems that solve
the what to imitate(i.e. learning the important features of a demonstratekl) tag providing
well-characterized spaces of rigorous metrics to captsserdial task features.

The social and physical context of imitation will also beated in forthcoming work at in-
creasing levels of complexity, taking into account e.gesigbn of a model, static and dynamic
observation, as well as timing constraints and turn-takitgraction.



A Appendix: Notes on the Demonstration Video

An .avifile showing the experiments described in section 10.2 catolaloaded fronht t p:

/ I homepages. fei s. herts. ac. uk/ ~congaal/ cogni ron- D421. avi .

A human is shown arranging three objects (a red, a green atgkealock) on a grid surface
workspace. Theffectsof this demonstration are captured (see figure 14, left) hacttitical
points are found (see figure 14, middle). Starting from aishigar initial configuration of the
objects in the imitator’'s workspace (see figure 14, righgjresponding actions are generated by
the JABBERWOCKY system for each of the two target imitator platforms (ddsetiin sections
9.4.1 and 9.4.2), for three different combinations of dfféisplacemeninetrics (see figures 16,
left and 15, left). The imitator platforms are then showm(giated in Webot9") to imitate the
demonstration using the corresponding actions producélddadaBBERWOCKY system, starting
from their dissimilar initial configuration and matchingcbaeffect metric combinations (see
figures 16, right and 15, right).

The video is encoded using DivX 5.2.1 for Windows. A free i@nsf the codec can be down-
loaded fromht t p: / / www. di vx. com di vx/ downl oad/ .



References

[Alissandrakis, 2003] Alissandrakis, A. (2003)Imitation and Solving the Correspondence
Problem for Dissimilar Embodiments - A Generic FramewoiRhD thesis, University of
Hertfordshire.

[Alissandrakis et al., 2002] Alissandrakis, A., NehanivLC and Dautenhahn, K. (2002). Imi-
tation with ALICE: Learning to imitate corresponding actgoacross dissimilar embodiments.
IEEE Trans. Systems, Man & Cybernetics: PayB&(4):482—-496.

[Alissandrakis et al., 2003a] Alissandrakis, A., Nehar@y, L., and Dautenhahn, K. (2003a).
Solving the correspondence problem between dissimilarligagied robotic arms using the
ALICE imitation mechanism. IProc. Second International Symposium on Imitation in Ani-
mals and Artifacts — Aberystwyth, Wales, 7-11 April 2Q@yes 79-92. Society for the Study
of Artificial Intelligence and Simulation of Behaviour.

[Alissandrakis et al., 2003b] Alissandrakis, A., Nehary, L., and Dautenhahn, K. (2003b).
Synchrony and perception in robotic imitation across entbedts. InProc. IEEE Inter-
national Symposium on Computational Intelligence in Rimlsaind Automation (CIRA '03)
pages 923-930.

[Alissandrakis et al., 2004] Alissandrakis, A., Nehaniv,lCG and Dautenhahn, K. (2004). To-
wards robot cultures? — Learning to imitate in a robotic aest-bed with dissimilar embodied
agentsinteraction Studies: Social Behaviour and CommunicatioBiblogical and Artificial
Systemss(1):3-44.

[Billard et al., 2004] Billard, A., Epars, Y., Calinon, S.h€ng, G., and Schaal, S. (2004). Dis-
covering optimal imitation strategieRobotics and Autonomous Systef&2-3.

[Billard and Schaal, 2002] Billard, A. and Schaal, S. (2002pmputational elements of robot
learning by imitation. IMPAmerican Mathematical Society Central Meeting, MadisoctoDer
12-13, 2002

[Byrne and Russon, 1998] Byrne, R. W. and Russon, A. E. (1928grning by imitation: a
hierarchical approaciBehavioral and Brain Sciencg21:667—-709.

[Calinon and Billard, 2004] Calinon, S. and Billard, A. (200 Stochastic gesture production
and recognition model for a humanoid robot. IBEE/RSJ Intl Conference on Intelligent
Robots and Systems (IROS)

[Call and Carpenter, 2002] Call, J. and Carpenter, M. (2002)ree sources of information in
social learning. In Dautenhahn, K. and Nehaniv, C. L., edjtbnitation in Animals and
Artifacts. MIT Press.

[Dautenhahn, 1994] Dautenhahn, K. (1994). Trying to inaitata step towards releasing robots
from social isolation. In Gaussier, P. and Nicoud, J.-Ditced, Proc. From Perception to
Action Conference, Lausanne, Switzerlgpalges 290-301. IEEE Computer Society Press.



[Dautenhahn and Nehaniv, 2002] Dautenhahn, K. and Neh@&nilk, (2002). An agent-based
perspective on imitation. In Dautenhahn, K. and Nehani\,.Ceditors,Imitation in Animals
and Artifacts pages 1-40. MIT Press.

[Kolodner, 1993] Kolodner, I. L. (1993)Case-Based Reasoninljlorgan Kaufmann, San Ma-
teo, CA.

[Kuniyoshi et al., 1994] Kuniyoshi, Y., Inaba, M., and Inqui¢ (1994). Learning by watching:
Extracting reusable task knowledge from visual obsermatiof human performancdEEE
Trans. Robot. Automatl0:799-822.

[Michaud and Matari¢, 1999] Michaud, F. and Mataric, M(1999). Representation of behav-
ioral history for learning in nonstationary conditior®®obot. Auton. Syst29:187-200.

[Michel, 2004] Michel, O. (2004). Webots: Professional ni@bobot simulationlnternational
Journal of Advanced Robotic Systerhfl):39-42.

[Nehaniv, 1996] Nehaniv, C. L. (1996). From relation to eatidn: The covering lemma for
transformation semigroupsournal of Pure & Applied Algebral07(1):75-87.

[Nehaniv, 2003] Nehaniv, C. L. (2003). Nine billion corresylence problems and some meth-
ods for solving them. IProc. Second International Symposium on Imitation in Arténaad
Artifacts — Aberystwyth, Wales, 7-11 April 2Q@#&ges 93-95. Society for the Study of Arti-
ficial Intelligence and Simulation of Behaviour.

[Nehaniv and Dautenhahn, 1998a] Nehaniv, C. L. and Dautenhé. (1998a). Embodiment
and memories - algebras of time and history for autobiogcapgents. InProceedings of
14th European Meeting on Cybernetics and Systems ReseRICISR’'98 pages 651-656.

[Nehaniv and Dautenhahn, 1998b] Nehaniv, C. L. and Dautemhid. (1998b). Mapping be-
tween dissimilar bodies: Affordances and the algebraiad@ations of imitation. In Demiris,
J. and Birk, A., editorsProceedings European Workshop on Learning Robots 1998 FEEWL
7), Edinburgh, 20 July 199%ages 64—72.

[Nehaniv and Dautenhahn, 2000] Nehaniv, C. L. and Dautemiah(2000). Of hummingbirds
and helicopters: An algebraic framework for interdisciply studies of imitation and its
applications. In Demiris, J. and Birk, A., editorsiterdisciplinary Approaches to Robot
Learning pages 136-161. World Scientific Series in Robotics andliggat Systems.

[Nehaniv and Dautenhahn, 2001] Nehaniv, C. L. and Dauteamh@h(2001). Like me? - mea-
sures of correspondence and imitati@ybernetics and Systeng2(1-2):11-51.

[Nehaniv and Dautenhahn, 2002] Nehaniv, C. L. and Dautemhidh(2002). The correspon-
dence problem. In Dautenhahn, K. and Nehaniv, C. L., edifongation in Animals and
Artifacts, pages 41-61. MIT Press.



[Nielsen and Dissanayake, 2003] Nielsen, M. and Dissarggyak(2003). Synchronic imitation
as pre-linguistic social interaction. FProc. Second International Symposium on Imitation in
Animals and Artifacts — Aberystwyth, Wales, 7-11 April 2qi8yes 131-137. Society for the
Study of Artificial Intelligence and Simulation of Behaviou

[Quinlan, 1993] Quinlan, J. R. (1993X4.5: Programs for machine learningMlorgan Kauf-
mann, San Mateo, CA.

[Sammut et al., 1992] Sammut, C., Hurst, S., Kedzier, D., Michie, D. (1992). Learning to
fly. In Proc. Ninth International Conference on Machine Learnipgges 385-393. Morgan
Kaufmann.

[Schaal, 2000] Schaal, S. (2000). The SL simulation andtmeed control software package.
USC.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (199inforcement Learning: An
Introduction MIT Press, Cambridge, MA.

[Whiten, 2002] Whiten, A. (2002). Imitation of sequentialchhierarchical structure in action:
Experimental studies with children and chimpanzee. In Batéhn, K. and Nehaniv, C. L.,
editors,Imitation in Animals and Artifactpages 191-210. MIT Press.



