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Executive Summary

This report describes the initial experiments carried out with the JABBERWOCKY system devel-
oped as part of the University of Hertfordshire’s first phaseof the program of research for the
COGNIRON project. TheJABBERWOCKY system generates appropriate action commands that
can be used by a robotic companion to imitate the tasks demonstrated by a human user, solving
thecorrespondence problemof mapping observed behaviour to the robot’s own embodiment.
The report is complemented by a demonstration video of theJABBERWOCKY system using cap-
tured data from a human demonstration to generate corresponding actions targeted to two dif-
ferent (dissimilarly embodied) imitator platforms (in simulation), that imitate by matching the
arrangement of objects on a workspace, starting from dissimilar initial positions and according
to combinations of differenteffect metrics(see Appendix A).
The experimental results provide initial validation for the JABBERWOCKY system, and illustrate
the qualitatively different imitative behaviours that result from using different metrics to match
theeffectaspects of the demonstration of object arrangement.
The work was carried out to satisfy the requirements of Research Area (RA) 4 as outlined in
Work Package (WP) 4.2 to meet the 12 month target; Deliverable 4.2.1. Details of the RAs,
WPs, Key-Experiments (KEs),COGNIRONFunctions (CFs) and Deliverables can be found in the
respectiveCOGNIRON project documents.

Role of Evaluation of Experiments on Correspondence Prob-
lem in Robot Learning on How to Imitate Humans in COGN-
IRON

The work presented in this report for WP4.2 (“Correspondence mapping across dissimilar bodies
(How to imitate)”) helps to provide rigorous scientific foundations forCOGNIRON functions CF-
RG:“Learning to reproduce gestures”and CF-LIF:“Learning important features of a task”, and
develops in synergy with workpackage WP4.1 (“Sub-goals extraction and metrics of imitation
performance”) by (1) providing a broad theoretical and practical systematic scientific framework
from which to select what aspects of behaviour to imitate (goal and sub-goal metrics for states,
actions and effects) going beyond the current state-of-the-art, and (2) by implementing a multi-
targetable architecture which allows the specific featuresextracted from human demonstrations
to be imitated on different platforms.

Relation to the Key-Experiments

The work presented in this report is relevant to KE3 script:Learning Skills “Arranging and in-
teracting with objects”. The script stresses the robot’s ability to learn from implicit (imitation
learning) and explicit (verbal interaction) teaching. As the embodiment of the human user and
the robotic companion will be dissimilar, acorrespondence problemmust be solved, defined by
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the imitator’s embodiment, the sub-goal granularity, and the metrics used to match aspects of
behaviour. Extensions of theJABBERWOCKY system presented this report could be used to gen-
erate action commands that a robotic companion could use to imitate the tasks demonstrated by
a human user. Since the robotic platform to be used in theCOGNIRON KE3 is not yet fixed, and
also for maximum applicability, WP4.2 has adopted a genericapproach to the correspondence
problem, targeting multiple different potential platforms. The corresponding solutions produced
by the system can be targeted to multiple robotic platforms and adapt to arbitrary starting condi-
tions.
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1 Introduction

For a robot to learn tasks and skills from a naive human, e.g. in a home inhabited by people who
neither can nor want to learn programming languages, inverse kinematics, nor artificial intelli-
gence techniques, the robot’s capabilities must implementgeneral imitation and social learning.
A robotic companion learning tasks and skills by demonstration from the human user is a power-
ful paradigm for transferring knowledge within a social context. But, as the robot and the human
will not have the same embodiment and not the same access to object affordances, the robot must
have the capability to discover appropriate mappings of itsownactionsso as to reproducestates
andeffectsthat match the task demonstrated by the human. This is calledthe correspondence
problemin imitation and must be solved by the robot in order to successfully imitate.
Different aspects of matched behaviour are required for different types of social learning/robot
programming by demonstration. We review the relevant theoretical concepts with emphasis on
different metrics and classes of correspondence problems defined by the sub-goal granularity and
the choice of which aspects of behaviour are significant and should be matched.
Towards solving the correspondence problem and allowing a robotic companion to match the
behaviour of the human user, theJABBERWOCKY system is developed. The system uses captured
data from a human demonstrator to generate appropriate action commands that can be targeted
for various software and hardware platforms. These actionsshould allow the imitating agent to
achieve corresponding actions, states and effects, depending on

• the metrics used to evaluate the similarity between the observed demonstration and the
imitative behaviour,

• the sub-goal granularity,

• the embodiment restrictions and constraints (as imposed bythe targeted imitator platform)
and

• the possibly different initial state of the objects in the environment.

The system is intended to be able to generalize across variations in all of the above items.
The resulting character of the imitative behaviour will greatly depend on the metrics used to
match aspects of the human demonstrated behaviour. In the initial 12 months we have con-
centrated oneffectmetrics, since they are essential for imitation of object manipulation and
arrangement (a capability assumed important for a cognitive robotic companion) and also since
they can be employed by a variety of imitators with very dissimilar embodiments. We defined a
set of important effect metrics for use in the initial experiments with theJABBERWOCKY system.
These are demonstrated and evaluated for two target imitator platforms in experiments reported
here.
Further directions, including extensions to usingstateandactionmetrics, different target imitator
platforms, the characterization of thespaces of metrics, and the relation to goal extraction are
also discussed.
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2 Overview

The remainder of this report is organized as follows:
Sections 3 and 4 give theoretical background on theagent-based perspectivein imitation and the
correspondence problemof how to map actions modelled by a human to those of an autonomous
imitator.
Section 5 gives further background by presenting an overview of the ALICE (Action Learning
via ImitatingCorrespondingEmbodiments) generic framework for solving the correspondence
problem. TheALICE framework provides a functional architecture that informsthe design of
robotic systems that can learn socially from a human demonstrator.
Section 6 gives details on the relevance of the work presented in this report to theCOGNIRON

functions and key-experiments.
One system informed by theALICE framework isJABBERWOCKY, developed for theCOGNIRON

project, and presented in section 7. TheJABBERWOCKY system uses captured data from a human
demonstrator to generate appropriate action commands thatcan be targeted for various software
and hardware platforms.
Section 8 defines a selection of metrics that are used to matchtheeffectsaspect of the captured
demonstrated tasks by theJABBERWOCKY system in the experiments presented in this report.
The experimental setup is given in section 9, while the experimental results are presented and
discussed in section 10.
Finally, section 11 gives a summary, conclusions and discusses future work.
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3 The Agent Based Perspective on Imitation

In order to identify the most interesting and significant problems on robot-human imitation, an
agent-based perspective must be used [Dautenhahn and Nehaniv, 2002]. In this perspective, im-
itation is best considered as the behaviour of an autonomousagent in relation to its environment,
including other autonomous agents. The mechanisms underlying imitation are not separated
from the behaviour-in-context, including the social and non-social environments, motivations,
relationships among the agents, their embodiments, the agent’s individual and learning history,
etc. Such a perspective helps unfold the full potential of research on imitation and helps in iden-
tifying challenging and important research issues. The agent-based perspective has a broader
view and includes five central questions that the imitating agents must address:who to imitate,
whento imitate,what to imitate,how to imitate and how toevaluatea successful imitation. A
systematic investigation of these research questions can show the full potential of imitation from
an agent-based perspective [Dautenhahn and Nehaniv, 2002].

3.1 The “Big Five” Questions

An autonomous agent, in order to be able to imitate must address the following five questions.

Who to imitate? It is important that the imitating agent chooses its model1 in such a way that
engaging in an imitating behaviour would benefit the imitator in some way. The interact-
ing agents might have different goals and receive differentrewards. The imitator must first
examine whether the model actions are beneficial or relevantto his own tasks and then
extract a possible behaviour to imitate. If the agent has to choose among several models,
some evaluation of the performance of the appropriate behaviour(s) by the possible candi-
date models is required before a choice is made (cf. [Dautenhahn, 1994]). Note, an agent
is not required to be aware of the fact that the performed behaviour is to be imitated by
another agent, although it might help to provide feedback onthe success of the imitative
behaviour.

For the work described in this report, it will be assumed, in general, that the relationship is
given (demonstrator = human user, imitator = robotic companion) and not to be discovered
by the imitating agent. It will also be assumed that the humanis aware of her or his role as a
demonstrator and will not try to deceive or confuse the robot, but instead try to demonstrate
the task in the most possibly clear way.

When to imitate? Deciding when to engage in imitating behaviour, the appropriate time, situa-
tion, context etc. is another important question that must be resolved.Immediate imitation
leads to synchronous behaviour, with the agents sharing thesame context and using the
same objects. This can be beneficial in speeding the process of learning. Deferred imi-
tation might occur later, even at the absence of the model but withina relevant context.

1In this report the termdemonstratorwill be used to indicate an agent that has an active ‘teacher’role, i.e. is
aware that a ‘student’ is observing the demonstration and will try to accommodate it. In contrast, the termmodelis
used in a more generic case to indicate any agent that performs a behaviour that could be imitated by another agent.
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Synchronic imitationoccurs at the same time as the model’s behaviour, using objects sim-
ilar to the ones the model is using [Nielsen and Dissanayake,2003].

The question ofwhenalso includes the issue ofwhyto imitate. The agent should be moti-
vated to imitate the model instead of imitating indiscriminately all the time. For example
there might be a benefit for imitating, either for the individual, or for its kin/group.

For the work described in this report, the imitator might perform immediate or synchronic
imitation while learning (depending on whether the same or corresponding objects are
used) and deferred imitation when the task that has been learned needs to be performed at
a later time.

What to imitate? There are several aspects of a demonstrated behaviour that could be imitated.
It may be preferable to imitateactions, states, or desirableeffectsof an observed behaviour
[Nehaniv and Dautenhahn, 1998, 2001, 2002]. The structure of the knowledge transferred
presents another problem, as there can be a distinction between different modes of imita-
tion. Richard Byrne and Anne Russon propose two different kinds of imitation,program
levelandaction levelas opposite ends of a spectrum, i.e. copying the organizational struc-
ture of the behaviour versus copying the surface form of behaviour. As a general conse-
quence of this, an agent is required to have the ability to build hierarchical structures in
order to exhibit program level imitation [Byrne and Russon,1998].

The purpose of the imitation relates to the degree of its success. Using the example of
imitating a dance instructor, one might choose to imitate only the end result, e.g. reaching
a specific location on the dance floor. This can be done either by following the path that
the instructor used or maybe ignoring it (partially or totally). The student can also try to do
the dance steps that the instructor performed while moving on that path. In this example
choosing to ignore either the path or the actions that need tobe performed in the exact
order of sequence will result in poor imitation according tomost dance judges. This is
especially true because as external observers they can be unaware of the goals and priorities
that the imitator has chosen. Using a differentgranularity, i.e. distinguishing which are the
important aspects of the model performance and dividing them into a number of sub-tasks,
will produce different results.

In the case of imitating the painting of a wall, the situationis quite different. The net
result, i.e. covering the entire wall with paint is what is important and can be achieved in
numerous ways. The order of paintbrush strokes in the sequence is not important. Nor is
replicating the exact actions. The use of a brush of different width or type than the one used
by the model is also not important here, nor is e.g. the use of aladder to make reaching
the higher part of the wall easier. The imitator is free to vary all three aspects and can still
succeed. Replicating exactly the same hand movements as themodel, but being far from
the wall without the brush making actual contact with the surface will result in failure due
to misinterpretation of the desired result. Using the same example it can also be pointed
out that even if the entire wall is finally covered, any paint stains on the floor or the rest
of the room will undermine the overall result. Therefore, taking into account the (both
desired and undesired) effects on the environment can affect the success of the imitation.
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The perspective of the observed actions - whether it is absolute or relative - poses another
important issue. If any of the actions performed by the modelare not mirror-symmetric (as
is most usual), choosing among the possible versions will affect the imitation result, e.g.
if a robot is to imitate somebody that waves her right hand should the robot raise its right
or left hand? (Not to mention what should the robot should do if it has a gripper but no
hands!)

The complementary question ofwhatto imitate is addressed by WP4.1 (“Sub goals extrac-
tion and metrics of imitation performance”). Later in theCOGNIRON project, work from
WP4.1 will be integrated with the work stemming from WP4.2 (“Correspondence mapping
across dissimilar bodies (How to imitate)”, presented in this report) and provide metrics
and granularity to be used in the experiments using theJABBERWOCKY system described
in section 7. For the work presented in this report, in order to perform thehow to imitate
experiments until month 18 and from the start of the first year(where the WP4.1 results
were not yet available), the demonstrated behaviour aspects that are to be imitated (actions,
states and/or effects) are given in advance, and not discovered by the agents.

How to imitate? Once the agent has decidedwhoandwhat to imitate, appropriate mechanisms
must be employed to achieve the necessary imitating actions. The embodiment of the
agent and its affordances will play a crucial role. It is possible that the model and imitator
agents will have dissimilar embodiments with different number of parts, limbs, joints,
degrees of freedom (DOF). Even small differences in the required affordances might affect
the performance of the imitation behaviour. In order to decide which muscles or motors
and actuators to use in order to move its body parts, the agentmust (at least partially)
solve2 thecorrespondence problem(see section 4), the main focus ofCOGNIRON WP4.2
(“Correspondence mapping across dissimilar bodies (How toimitate)”) and the research
presented in this report.

How to evaluate the imitative behaviour? For an attempt made to imitate the model behav-
iour, there needs to be a measure of evaluating the behavioural matching. Explicit metrics
are probably not used by animals and humans, but in artificialsystems, the choice of an
appropriate metric is very important, as it will be used to capture the notion of the differ-
ence between performed and desired actions and also the difference between attained and
desired states [Nehaniv and Dautenhahn, 2001, 2002, Alissandrakis et al., 2002, 2003a,
2003b]. The evaluation can be performed either by the imitator, the model or an external
observer.

The question ofevaluatingthe imitative behaviour is closely linked to the question of
what to imitate; the metrics used will have to measure the similarity of the chosen aspects
to imitate (actions, states and/or effects). For example, if the statesof the demonstrated
behaviour are to be imitated, appropriatestate metricsmust be used.

For the work presented in this report, as the aspects to imitate are given and not discovered
by the imitating agents, the metrics will also be given, instead of found from observing the

2This can also involve learning.
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task demonstration. For the experiments described in this report, the agents are imitating
the effectsaspect of the demonstration and we have defined our owneffectmetrics3 (see
section 8).

Each question presents its own difficulties and research problems. An integrated approach to
these questions must be the ultimate goal of work on imitation in adaptive systems, in particular
for robots learning skills and tasks from naive human users.

3Also, towards a characterization of thespace of effect metrics, we are using these metrics to explore ab-
solute/relative angle and displacement aspects, focusingon overall arrangement and trajectory of manipulated ob-
jects (see section 8).

Page 6



COGNIRON
FP6-IST-002020

Deliverable D4.2.1
31/12/2004

Revision final

4 The Correspondence Problem in Imitation

A fundamental problem when learning how to imitate is to create an appropriate (partial) map-
ping between the actions afforded by particular embodiments to achieve corresponding states and
effects by the model and imitator agents [Nehaniv and Dautenhahn, 1998b]. For similar embod-
iments, this seems to be straightforward (although it actually involves deep issues of perception
and motor control). But once the assumption that the agents belong to the same ‘species’, i.e.
have sufficiently similar bodies and an equivalent set of actions, is dropped, as with a robot
imitating a human, the problem becomes more difficult and complex. Even among biological
agents, individual differences in issues of perception, anatomy, neurophysiology, and ontogeny
can create effectively dissimilar embodiments between members of the same species. A close
inspection of seemingly similar artificial agent embodiments can yield similar conclusions due to
issues like individual sensor and actuator differences (hardware) or the particular representations
and processing that these agents employ (software). In theCOGNIRON setting, it will be desir-
able to have different kinds of agents in the learning process, i.e. humans and robots interacting
socially.
The following statement of thecorrespondence problem[Nehaniv and Dautenhahn 2000, 2001,
2002] draws attention to the fact that the model and imitatoragents may not necessarily share
the same morphology or may not have access to the same affordances:

Given an observed behaviour of the model, which from a given starting state leads
the model through a sequence (or hierarchy [or program]) ofsub-goalsin states, ac-
tion and/oreffects, one must find and execute a sequence of actions using one’s own
(possibly dissimilar) embodiment, which from a corresponding starting state, leads
through corresponding sub-goals - in corresponding states, actions, and/or effects,
while possibly responding to corresponding events.

In this approach, through a correspondence4 an imitator can map observed actions of the model
agent to its own repertoire of actions as constrained by its own embodiment and by context
[Nehaniv and Dautenhahn 2000, 2001, 2002]. Qualitatively different kinds of social learning
result from matching different combinations of matching actions, states and effects at different
levels of granularity [Nehaniv, 2003] (see subsection 4.1).
Artificial agents that have the ability to imitate may use (perhaps more than one) metrics to
compare the imitator agent’s own actions, states and effects with the model’s actions, states and
effects, in order to evaluate the imitative behaviours and discover corresponding actions that they
can perform to achieve a similar behaviour. The choice of metrics used is therefore very im-
portant as it will have an impact on the quality and characterof the imitation. Many aspects of
the model behaviour may need to be considered, as the metricscapture the notion of the salient
differences between performed and desired actions and alsothe difference between attained and
desired states and effects [Nehaniv and Dautenhahn 2001, 2002]. The choice of metric deter-
mines, in part,whatwill be imitated, whereas solving the correspondence problem concernshow

4In the context of the work presented in this report, arecipeis an embodiment-independent overall (loose) plan,
taking into account the metrics, sub-goal granularity and initial conditions. Each recipe can be adapted according to
a targeted platform’s own embodiment restrictions and context, to be executed by the imitator.
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Table 1: A taxonomy of social learning, imitative and matched behaviour. Extending
[Call and Carpenter, 2002], different theoretical terms ofsocial learning, imitative and matched
behaviour can be associated with each combination ofgoals, actionsandresults. Note that by
using the term sociallearning, Call and Carpender assume at least a degree of novelty. However
the classification can be used just as well also for imitativeor matched behaviour when there is
no novelty.

Goals
(understood)

Actions
(copied)

Results
(reproduced)

Theoretical term

yes yes yes Imitation
yes yes no Failed Imitation
yes no yes Goal Emulation
yes no no Goal Emulation
no yes yes Mimicry
no yes no Mimicry
no no yes Emulation
no no no no Social Learning

to imitate [Dautenhahn and Nehaniv, 2002]. In general, aspects of action, state and effect as well
as the level of granularity (what to imitate) do all play roles in the choice of metric for solv-
ing the problem ofhow to imitate[Nehaniv and Dautenhahn, 2001, Alissandrakis et al., 2002,
Billard et al., 2004]. On-going research is thus addressingthe complementary problem of how
to extract sub-goalsandderive suitable metricsautomatically from observation [Nehaniv and
Dautenhahn, 2001, Nehaniv, 2003, Billard et al., 2004, Calinon and Billard, 2004] andCOGN-
IRON D4.1.1.

4.1 Taxonomies of Imitation, Social Learning and Matched Behaviour

Josep Call and Malinda Carpender in [Call and Carpenter, 2002] associate the theoretical terms
imitation, goal emulation mimicryandemulationwithin a common framework based ongoals,
actionsandresults(see Table 1).
To illustrate the distinction of goals, actions and results(as used in [Call and Carpenter, 2002]),
let us assume the imitator is observing the model manipulating a box5. If the box is transparent
and an object, such as piece of candy, can be seen inside, the imitator may understand that the
goal of the model is to retrieve it. If afforded by the box, the imitator might open the box in
a different way, instead of copying the exact modelactions, for example moving a sliding side
instead of lifting the lid. Opening the box will reproduce the resultof having an open box. The

5This box could be similar to the ‘artificial fruits’ used by [Whiten, 2002] for investigating the imitation of
sequential and hierarchical actions in human children and chimpanzees.
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goal could be “misunderstood” as simply opening the box. Alternatively, the imitator might
instead crush the box achieving the goal of obtaining the candy inside.
The work presented in this report does not use this taxonomy by [Call and Carpenter, 2002],
which was concerned with terminological issues in psychology and biology, but a related one
developed also for AI applications. For the research presented in this report we will use the
systematic taxonomy presented in [Nehaniv, 2003] shown in Table 2 that uses the combination of
metrics that measure the similarity in a given aspect of the model’s behaviour and the granularity,
to define classes of imitationcorrespondence problems. This taxonomy is broad and can be used
in both psychology and biology, and also in computer scienceand artificial intelligence.
Call and Carpenter’s taxonomy merges aspects ofwhatto imitate andhowto imitate, but from the
perspective of the correspondence problem, it is useful to separate these issues. Nehaniv offers
a taxonomy strictly for the latter. Althoughactionsare also used in Nehaniv’s framework, the
resultsare partitioned intostates(of the agent bodies) andeffects(changes in the environment).
The notion ofgoals(and to some extentresults) as used by Call and Carpenter is a separate issue
related towhat to imitate. Inferring another agent’s goals is a difficult problem which will not
be addressed in this report. Compared to humans and animals,for artificial agents, recognizing
intentionality(understanding the goals of the model) remains a largely unsolved problem. The
choice of metrics and granularity that the agent should use to imitate is another complementary
problem addressed by on-going research ongoal extraction[Nehaniv and Dautenhahn, 2001,
Billard and Schaal, 2002, Nehaniv, 2003, Billard et al., 2004, Calinon and Billard, 2004].
Rather, in the system presented and the experiments discussed in this report (see sections 7 and
9) goals (or sequences of sub-goals), metrics and granularity are not extracted by the imitator,
but are given.
Cognitive companions learning tasks and skills in the home by imitating human demonstrators
will need to handle aspects in all these classes. For the workpresented in this report we will
concentrate in theeffectsaspect (classes 3 to 5), as effects on objects in the environments (their
arrangement and manipulation) are likely to be of primary interest to a human user in a home
environment.
In the future, the work will extend to considerstates, actions, and combinations of them.
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Table 2:Classes of correspondence problems arising from particular combinations of met-
rics and granularities. Each class is defined by the combination of metrics that measure the
similarity in a given aspect of the model’s behaviour and thegranularity used. [Nehaniv, 2003]
relates this taxonomy to theoretical terms traditionally used to classify types of social learning
and matching behaviour.

Metrics Granularity Class
– – – end 0
– – – coarse 1
– – – fine 2
– – effects end 3
– – effects coarse 4
– – effects fine 5
– states – end 6
– states – coarse 7
– states – fine 8

actions – – end 9
actions – – coarse 10
actions – – fine 11

– states effects end 12
– states effects coarse 13
– states effects fine 14

actions – effects end 15
actions – effects coarse 16
actions – effects fine 17
actions states – end 18
actions states – coarse 19
actions states – fine 20
actions states effects end 21
actions states effects coarse 22
actions states effects fine 23
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5 The ALICE framework

A mechanism that solves the correspondence problem is an essential part of any artificial system
with successful imitating behaviour capabilities. In previous work we have developedALICE

(Action Learning viaImitatingCorrespondingEmbodiments), a generic framework for solving
the correspondence problem [Alissandrakis et al., 2002, 2004, Alissandrakis, 2003]. TheALICE

framework assumes that animitator agent is exposed to amodelagent, which is performing
a sequence ofactions, these actions comprising thebehaviourof the model. By performing
an action, the agents can change theirstateand cause someeffectson their environment. The
ALICE framework builds up a library of actions from the repertoireof an imitator agent that
can be executed to achieve corresponding actions, states and effects to those of a model agent
(according to given metrics and granularity) (see Figure 1).

actions

key

percepts

proprioceptive information

proposed

proposed

update

Library
Correspondence

Mechanism
Generating

Metric ImitatorModel

History

History
Mechanismupdate

sequences

suggested

action(s)

action(s) action(s)

action

entries

performed

Figure 1: The ALICE framework. The perceptsof the imitator arising from the model’s be-
haviour (actions, states and effects) andproprioceptive information(state) of the imitator form
a keythat is used by thecorrespondence library(if it matches any of the existing entry keys at
that stage of the library’s growth) and thegenerating mechanismto produce a sequence of one
or moreproposed action(s). These are evaluated using ametric, and the correspondence library
is updated accordingly with the resultingsuggested action(s)for the imitator. In parallel (shown
in the figure using a grey color), thehistory mechanismcan be used to discover anyaction se-
quencesfrom thehistory, that can improve any of the existing library entries. The sequence of
all the actions performed so far by the imitator composes thehistory.

TheALICE framework is comprised of two major components on top of anygenerating mecha-
nism(see section 5.3) of imitative behaviours. An overview of the framework is shown in Figure
1. The first component builds-up acorrespondence library(see section 5.1), using perceptual
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(both exteroceptive and proprioceptive) data to relate themodel actions, states and effects to cor-
responding actions that can be performed by the imitator andresult in similar6 states and effects.
The second component, thehistory mechanism(see section 5.4), addresses any limitations of the
generating mechanism used by the agent, by discovering additional alternative correspondences
from the imitator’s actionhistory.

The Correspondence Library When observing the model (at a certain sub-goal granularity),
the imitator agent constructs akey, consisting of the perceived action(s), state(s) and/or
effects of the model. The key can also include proprioceptive information (state of the
imitator). This key is compared with theentry keysof the correspondence library so far.
Depending if the key matches another existing entry key, thefollowing procedure will be
taken:

Create a new entry If the key doesn’t match any other corresponding library key, then
a new entry is created in the library, with this key as the entry key. This entry will
initially contain a corresponding action of the imitator, found by thegenerating mech-
anism.

Update an existing entry If the key matches an existing entry key, then either:

Use the entry The entry will contain one (or more) corresponding imitatoraction
sequences. If more than one exists, choose one from the list according to some
criteria, e.g. the shortest imitator’s action sequence. Or:

Modify the entry If the generating mechanism can produce a better (accordingto
the metric) imitator action, modify the entry to contain it.

The imitator can then use this imitator action to imitate (changing its state and resulting in
effects on the environment).

The History Mechanism In addition, the imitator agent can examine its history (a list of se-
quential imitator actionsperformedso far).

Update an existing entry If an imitator’s action (or a sequence) in the history results in
the same (or sufficiently similar) imitator’s state and/or effects, as compared to the
model’s state and effects of an existing entry key, then modify that relevant entry in
the correspondence library, by adding this imitator’s action(s) to its list of actions
under that key.

There are a variety of existing machine learning techniquesaddressing experience-based learn-
ing, for example, reinforcement learning [Sutton and Barto, 1998], case-based reasoning [Kolon-
der, 1993], inductive learning [Sammut et al., 1992, Quinlan, 1993], or learning of behavioural
histories [Michaud and Matarić, 1999], and others. The intention is not to develop a new and
efficient machine learning algorithm, but instead a framework for learninghow to imitateby

6Unless otherwise stated, comparison and similarity dependupon the metrics used in each context. Matching
comprises either aperfectmatch, or aloosematch that can depend on a similarity threshold.
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solving the correspondence problem is proposed and systematically studied. TheALICE frame-
work provides a functional architecture that informs the design of robotic systems that can learn
socially from a human demonstrator. Clearly, this framework can easily be combined with these
or many other machine learning techniques.

5.1 The Correspondence Library

The correspondence library7 consists of a number of entries, each identified by akey. The key
can be any combination of perceptual (model’s action, stateand effects) and proprioceptive (im-
itator’s state) data. These data relate to aspects of the model’s behaviour, and the imitator’s state
when those aspects were first observed. Each entry will contain one (or a list of) imitator’s ac-
tion(s) that if performed when the key is next observed, should achieve corresponding imitator’s
state and/or effects. Note that a metric value associated with the performance of any of these im-
itator’s actions is not kept in the entries, as it can be dependent of the imitator context (imitator’s
state).
A similarity thresholdmay be used to determine if a key has been observed before. Using a
looser matchingwill result in a smaller number of entries in the library. As these entries are
more generic, they will be updated more frequently (if the imitator is repeatedly exposed to the
model), resulting in faster rate of learning. On the other hand, the imitating performance may or
may not be acceptable depending on the minimum granularity required by the model behaviour.

5.2 Metrics and Granularity

The choice of metric and granularity will in part determine what the agent will imitate and affect
the overall character of the imitation. The metrics used should capture all the necessary and
important aspects of the actions that the agents can perform, the states they can be in, and possible
effects on the environment.
The comparisons may involve all three aspects of the behaviour,actions, statesandeffects, or any
combination of them. The combination used (together with the choice of granularity) will define
the correspondence problemclass(see section 4.1, table 2). Amatching or similarity threshold
can be used, to determine how ‘similar’ they need to be in order to match.

5.3 The Generating Mechanism

A generating mechanismis used by theALICE framework to produce the contents of the corre-
spondence library; it can beanyalgorithm or mechanism that generates actions (or sequences)
that are valid (i.e. within the agent’s repertoire) and possible in the context of the imitator.
The fact that an imitative action – even an accidental one – may receive positive feedback could
increase the animal’s motivation and tendency to imitate (cf. [Dautenhahn and Nehaniv, 2002]).

7At each stage in its growth, a library of correspondences is an example of a (partial) relational ho-
momorphism between the abstract automata associated with the model and the imitator [Nehaniv, 1996,
Nehaniv and Dautenhahn, 2001, Nehaniv and Dautenhahn, 2002].
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Moreover, this can serve to draw attention toward salient aspects of the environment and reveal
affordances of actions and objects useful for survival in the course of ontogeny. In theALICE

framework, no direct feedback from the model is used, instead the metrics are used to evaluate
the imitative behaviours.
In the ALICE overview, the generating mechanism remains underspecified, as the performance
of theALICE framework does not depend on the precise implementation of the generating mech-
anism as long as this mechanism returns a valid action that can be performed within the current
context by the imitator, from the entire action-space of theagent.
Generally, depending on the size and dimensions of the action-space, the generating mechanism
would more efficiently consider the states of the model and the imitator agents (also the effects
of the model), and use them to construct the selection of the corresponding actions (e.g. when
using inverse kinematics). Alternatively, either a less precise generating mechanism, or a gen-
erating mechanism that produces entirely random actions might serve just as well the purpose
of exploring the action-space when solving the correspondence problem, especially if the state-
space is sufficiently ‘small’. For a large action search space, a ‘smarter’ and more sophisticated
generating mechanism is required.
Depending on the position where it lies on this spectrum, thegenerating mechanism may range
from inadequate if used on its own (e.g. returning just random sequences of moves) to a highly
specialized complex algorithm that can return the most appropriate correspondence possible
without need for learning. For real-world applications, one would expect that the more efficient
the generating mechanism used, the faster the learning ratewill then be.

5.4 The History Mechanism

If only the actions found by the generating mechanism are used to build-up the correspondence
library, the performance of the imitator would be directly limited by the choice of the algorithm.
Moreover, some of the stored actions, although valid solutions to the correspondence problem
related to the actions of the model, may become invalid in certain contexts (state of the imitator).
Thehistory mechanismhelps to overcome these difficulties: The imitator can examine its own
history to discover further correspondences without having to modify or improve the generat-
ing algorithm used. These correspondences will besequences ofactions since, no matter how
simplistic, the generating mechanism is required to be ableto explore the entire search-space of
single actions.
The agent’shistory is defined as the list of imitator’s actions that were performed so far by
the agent while imitating the model together with their resulting imitator’s state and effects. This
kind of history provides valuable experience data that can then be used to extract useful mappings
to improve and add to the correspondence library created up to that point. The contents of the
history are useful, since the results (imitator’s resulting state and effects) of imitator actions are
known from past experience given a certain context (imitator’s previous state), without need for
prediction of performance8.
The methods for extracting this information from history can vary depending on the particular

8This remains a hard problem, especially for physical robotic systems.
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realization, and managing the found sequences of actions can depend on additional metrics (e.g.
keeping only the shortest sequence that can achieve the desired state and/or effects, or keeping
only the top five sequences according to a performance measure). The size of the history will
also depend on the actual implementation and/or the task context.
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6 Relevance toCOGNIRON Functions and Key-Experiments

The work presented in this report for WP4.2 (“Correspondence mapping across dissimilar bod-
ies (How to imitate)”) helps to provide rigorous scientific foundations forCOGNIRON functions
CF-RG:“Learning to reproduce gestures”and CF-LIF:“Learning important features of a task”,
and develops in synergy with workpackage WP4.1 (“Sub-goals extraction and metrics of im-
itation performance”) by (1) providing a broad theoretical and practical systematic scientific
framework from which to select what aspects of behaviour to imitate (goal and sub-goal met-
rics for states, actions and effects) going beyond the current state-of-the-art, and (2) by building
a multi-targetable architecture which allows the specific features extracted from human demon-
strations to be imitated on different platforms. The work isalso relevant to one of theCOGNIRON

key-experiments, KE3:“Learning Skills and Tasks”.

6.1 CF-RG: Learning to Reproduce Gestures

The robotic companion inCOGNIRON will have to be able to replicate a demonstrated task by its
user (imitate), although its embodiment and affordances will differ from those of a human. The
work presented in this report is focused on addressing thecorrespondence problemin imitation
(see section 4) and the question ofhow to imitate(see section 3.1, page 5).
The JABBERWOCKY system presented in section 7 uses captured data from a humandemon-
strating a task and given metrics and sub-goals, provides multi-platform targeted solutions for
the correspondence problem. These solutions can be converted into command actions that mul-
tiple imitator robotic platforms (currently in simulationonly, in the future extended to include
hardware) can execute to achieve a successful imitation of the task, depending on the particular
imitator’s embodiment and context.

6.2 CF-LIF: Learning Important Features of a Task

In order to perform initial experiments with the current implementation of theJABBERWOCKY

system (described in section 7), a series of metrics is defined (see section 8) that aregiven to
the imitating agents for matching the demonstration behaviour aspects. These defined metrics
also contribute towards a characterization of thespace of metrics, that will be useful in guiding
various types of robotic imitation and social learning fromhuman demonstrators.
In the future, results from WP4.1 (“Sub-goals extraction and metrics of imitation performance” )
will be used to allow the imitating agents to learn what metrics to use (and also how to extract
sub-goals) by observing the demonstration by the user (what to imitate).

6.3 KE3: Learning Skills and Tasks

The key-experimentLearning Skills and Tasksstresses the learning and reasoning capabilities
for the robot to acquire knowledge about goals and tasks. At the current stage it is planned to
demonstrate and assess the following skills which are implemented on a robot platform:

Page 16



COGNIRON
FP6-IST-002020

Deliverable D4.2.1
31/12/2004

Revision final

• Learning goals from observations (RA4, RA5, RA6).

• Reproduction of the goal for arbitrary starting conditions(RA4, RA6).

The work presented in this report is relevant to KE3 script:Learning Skills “Arranging and
interacting with objects”. The script stresses the robot’s ability to learn from implicit (imitation
learning) and explicit (verbal interaction) teaching, andis envisioned as follows: The robot learns
new skills to manipulate objects and, by so doing, it learns anew task. The robot will watch a
human demonstrator performing a task of manipulating some objects. The demonstration will be
repeated several times. Each demonstration will be slightly different from the others. The order
that the objects are manipulated may change, as well as the relative positions and displacements
of the objects. The absolute position of the objects may varyas well. While watching the
demonstrations, the robot will learn the invariants of the task (relative position and orientation
of the objects with respect to one another) and new skills such as object-actions relations (how
to grip an object). Once the demonstrations are finished, therobot will try to reproduce the
task. While doing so, the robot might query the user if some demonstration were ambiguous and
its choice is non deterministic. The user might stop and correct verbally the robot during the
reproduction, if the robot makes important mistakes.
As the embodiment of the human user and the robotic companionwill be dissimilar, acorrespon-
dence problemmust be solved, defined by the imitator’s embodiment, the sub-goal granularity,
and the metrics used to match the behaviour aspects. Extensions of theJABBERWOCKY system
presented in section 7 could be used to generate action commands that a robotic companion could
use to imitate the tasks demonstrated by a human user. Since the robotic platform to be used in
the COGNIRON KE3 is not yet fixed and also for maximum applicability, WP4.2has adopted
a generic approach to the correspondence problem, targeting multiple different potential plat-
forms. The corresponding solutions produced by the system can be targeted to multiple robotic
platforms and adapt to arbitrary starting conditions.
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7 Functional System Architecture

This section presents theJABBERWOCKY system developed for theCOGNIRON project, address-
ing thecorrespondence problemin imitation (see section 4). The design of theJABBERWOCKY

system is informed by theALICE framework (see section 5).

7.1 System Overview

The JABBERWOCKY system uses captured data from a human demonstrator to generate appro-
priate action commands that can be targeted for various software and hardware platforms. These
actions allow the imitating agent to achieve correspondingactions, statesandeffects, depending
on the (relevant to the demonstrated task and context) metrics and granularity (provided by a
what to imitateandsub-goal extractionmodule), embodiment restrictions and constraints (im-
posed by the targeted imitator platform), and possibly different initial state of the objects in the
environment (see Figure 2).
The corresponding actions, states and effects as performedby the imitator can also be captured
and used as a demonstration for another imitating agent, allowing for a form of cultural trans-
mission.
The system bears some similarity to the one presented in [Kuniyoshi et al., 1994], but with the
main differences that it can useany given metric and granularity and is designed to be able to
generate action commands targeted for a variety of platforms, both in software and hardware to
match different behaviour aspects and achieve various types of social learning.
The JABBERWOCKY implementation described in this report and used for the experiments (see
section 9) was implemented using theSwarm simulation system9 (coded in Obj-C) and MAT-
LAB.
The targeted imitator platforms used so far were implemented and simulated using WebotsTM;
theXanimhumanoid robot simulator is also under consideration.

7.2 Demonstrator (Model Agent)

The system uses captured data from a human demonstrator. Thedemonstrated behaviour is
captured using motion sensors (Polhemus LIBERTYTM motion capture system). By attaching
the motion sensors on the arms, hands and torso of the human, as well as on the objects that the
demonstrator is manipulating, we can obtain theactions(e.g. hand movements, gestures),states
(e.g. arm and body postures) andeffects(e.g. positioning, displacement, rotation of objects in
the workspace) of the demonstrator.

7.2.1 The Polhemus LIBERTYTM Motion Capture System

The motion capture system used is the LIBERTY 240/8 with eight sensor channels. It has 240
Hz update rate per sensor (simultaneous samples) and 3.5 msec latency. The resolution is 0.038

9Swarm is a software package for multi-agent simulation of complex systems. The official homepage of the
Swarm Development Group can be found athttp://wiki.swarm.org.
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Figure 2: The JABBERWOCKY system architecture. Using data captured from a human and
given appropriate metrics and sub-goal granularity, the multi-target system can produce action
command sequences that when executed by a software or hardware agent can achieve corre-
sponding actions, states and/or effects. The corresponding actions, states and effects as demon-
strated by the imitator can also be captured and used as a demonstration for another imitating
agent. Differently embodied and constrained target systems in various contexts need to be sup-
ported.

mm at 30 cm range;0.0012◦ orientation. The static accuracy is 0.08 cm RMS for X, Y or Z
position; 0.15◦ RMS for sensor orientation. The range is 90 cm at above specifications, with
useful operation in excess of 180 cm (the range used in the experiments was typically 50 cm).
The LIBERTY unit is connected to a Linux operating PC via the USB I/O port. The data format
used is ASCII in metric units. Depending on the experimentalrun, 1 to 8 sensors can be used.

7.3 Imitator (Target Platform)

The system is addressing the correspondence problem for dissimilarly embodied imitators, so the
how to imitatemodule produces action commands that can be used by multipledifferent target
platforms as imitator agents, both in simulation (software) and hardware (robots).
Each particular target platform will pose different embodiment restrictions and constraints to
the actions, states and effects it can achieve, and eventually to the quality and character of the
imitation.
The demonstrator and the imitator might share the same workspace or they might operate in dif-
ferent ones. Even in the same workspace, unless the objects and agents positions are arranged
back into the same initial configuration before the imitative behaviour, the context will be differ-
ent and the imitator therefore has to take that into consideration when imitating.
Once the imitator performs the actions using the same (or corresponding) objects in its workspace,
its actions, states and effects could also be captured and used as a demonstration for another
agent, allowing for a form ofcultural transmission.
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7.3.1 The WebotsTM Simulator

The Webots mobile robotics simulation software provides users with a rapid prototyping en-
vironment for modelling, programming and simulating mobile robots. The included robot li-
braries enable users to transfer their control programs to many commercially available real mo-
bile robots (including Aiboc©, Legoc© Mindstormsc©, Kheperac©, Koalac© and Hemissonc©)
[Michel, 2004].
For WP4.2, the Webots platform was used to implement simulations of two different target imi-
tator platforms (see figures 3 and 4) and described in section9.4:

• Multiple mobile robots, each corresponding to one of the manipulated objects (described
in section 9.4.1).

• A robotic manipulator arranging the corresponding objects(described in section 9.4.2).

7.3.2 The Xanim Simulator

Another possible target platform evaluated forJABBERWOCKY is theXanimsimulator created
by Stefan Schaal [Schaal, 2000].Xanim is a dynamic simulation of the 30 degrees of freedom
humanoid robotDB, located at the Advanced Telecommunication Research Institute (ATR) in
Kyoto (see figure 5).
Substantial extension of the physical modeling of objects and their manipulation environment in
Xanimwould be required to exploit the extent of effect matching now available withJABBER-
WOCKY, although this limitation does not preclude its possible use for state and action imitation
of a (stationary) human (e.g. see [Billard et al., 2004, Calinon and Billard, 2004]).

7.4 What to Imitate Module

Thewhat to imitatemodule will use the captured demonstration data to extract appropriate sub-
goals (granularity) and also discover what metrics must be used to capture the appropriate aspects
of the particular demonstration.
As noted in section 3.1, page 4, the question ofwhat to imitate is addressed by WP4.1. Cur-
rently, both metrics and the sub-goal granularity are given, as the results from WP4.1 are not yet
available to be integrated in the implemented system.
So far, the work on WP4.2 has concentrated on solving the correspondence problem for the
effectsaspect of the demonstrated behaviour, that is the manipulation of objects in the workspace.
Several differenteffectmetrics have been defined (see section 8) that are used in the experiments
presented in this report. In the future the work will be extended to consider thestateandaction
aspects of a demonstration.
In the current implementation of theJABBERWOCKY system, the sub-goal granularity is given by
finding thecritical points in the trajectories of the manipulated objects. A critical point occurs
when the direction of the captured trajectory and/or the orientation of an object changes by more
than a certain threshold.
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Figure 3: The three robots as objects platform. This platform (described in detail in section
9.4.1) is implemented and simulated using Webots. Each robot (red, green and blue) corresponds
to an object from the demonstrator’s workspace (according to the color), and leaves a trail to help
visualizing the imitative behaviour trajectory.

Figure 4:The manipulator and three objects platform. This platform (described in detail in sec-
tion 9.4.2) is implemented and simulated using Webots. The manipulator (yellow) is positioned
above the workspace and able to move and rotate the three colored objects (in this case, same size
as the corresponding ones manipulated by the demonstrator). When moved, each object leaves a
colored trail to help visualize the imitative behaviour trajectory.
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Figure 5:The Xanim simulator.

7.5 How to Imitate Module

Thehow to imitatemodule uses the captured data from the demonstration, the metrics and the
sub-goal granularity10 discovered by thewhat to imitatemodule to produce a sequence of action
commands for an agent to execute and imitate. These action commands are made target specific
by taking into account the particular embodiment, affordances and restrictions of the target imi-
tator agent, and also contextual information (including the initial state of) for both the agent and
the environment.
Concentrating on theeffectsaspect of the demonstrated behaviour to be imitated only, an
embodiment-independent solution to the correspondence problem can be found, taking into ac-
count theeffectmetrics and the sub-goal granularity. For example considera human opening
a cupboard, removing an object, closing the cupboard and placing the object on a table. This
sequence of events can be achieved by agents of varying embodiments, ignoringstateaspects
like e.g. which hand was used to open the cupboard or how the object was held (or grasped) or
evenactionaspects like e.g. the way the human walked (gait) across the room. Any agent that
can open the cupboard, transport the object and place it on the table can potentially imitate the
effects of this particular demonstration. But for this solution to be useful to an imitating robotic
companion, it must be converted to action commands that takeinto account its embodiment and
also the context (e.g. the cupboard is already open, the object is located on a different shelf in
the cupboard, the table is in another room), so that the imitator uses its motors and actuators to
achieve the desired effects of the task.
The choice of initially concentrating oneffectsis guided by the assumption that the manipulation
of objects will be the most important aspect of the demonstrated behaviours that users would like

10In the current system implementation both the metrics and the sub-goal granularity (critical points) are given.
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a robotic companion to imitate in a home environment (e.g. fetching objects or arranging them
in particular ways). In the future, the work will be extendedto consider also thestateandaction
aspects of a demonstration.
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8 Metrics

To evaluate how similar its actions, states and effects are to the model’s actions, states and effects,
an imitator agent uses different metrics (addressing thehow to evaluate the imitative behaviour
question, see section 3.1, page 3.1). When the value of the metric(s) used is minimised, then that
imitator action, state or effect (or a sequence of) is “optimized”, i.e. is the most similar to the
perceived model’s behaviour.
As we concentrate on the effect aspect of the agent’s behaviour, the metrics defined and used
in this work will be variouseffect metrics, evaluating the similarity between the effects on the
environment of the model and the imitator. We do not presently consider the state or the actions
aspects of the a model’s behaviour.
The reason for this prioritization is that in general, unless the embodiments are “very similar”
(i.e. a humanoid robot and a human), although an action or state metric can be defined and
used, the actions or states that minimize it will be qualitatively very different to those of the
model. For example consider a mobile robot on wheels, also having a single arm equipped with
a gripper, as an imitator and a human as a model. This robot will perhaps be able to achieve
similar arm postures (states) and perform similar gestures(actions) to the human, but only the
ones that require a single arm. It will be able to move to the same position in a room (state)
but the way it reaches the destination (action, using its wheels) will differ to that of the human
(action, walking). Still, this robot is able to arrange and manipulate objects (effects) but will
probably achieve them going through a very different sequence of states and actions. Trying to
force the robot to e.g. use a specific way to grasp an object, when another way is possible (and
perhaps more efficient) can be restricting depending on its particular embodiment and access to
affordances. In future work, we will consider states and later actions.

8.1 Effect Metrics

Towards a characterization of thespace of effect metrics, we are exploring absolute/relative angle
and displacement aspects and focus on the overall arrangement and trajectory of manipulated
objects. Looking at how objects can be manipulated (in a non-destructive and combining way),
there are two different perspectives: how the object was displaced and how it was rotated. The
displacement can be either relative or absolute related to the final position in the workspace, or
relative to the other objects within the workspace. The rotation can be also be relative or absolute
related to the final orientation of the object. To fully describe the manipulation of an object, both
displacement and angular effect aspects must be considered. We consider these aspects in a
two-dimensional workspace, such as a table surface.
If the initial configuration of the (same or corresponding) objects is the ‘same’ for both the model
and the imitator agents, then there is no observable distinction between using either the absolute
and relative displacement/rotation or the relative position (if the objects are manipulated in the
same order). But if the agents are active in a different workspace starting from a different initial
configuration of objects, or the timing and the order of the manipulations is not the same, it
will be impossible to satisfy simultaneously all the aspects. Therefore choosing to satisfy one
particular aspect will result in a qualitatively differenteffect than if another one was chosen,
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Figure 6: Somedisplacement (left) and angular metrics (right). To evaluate the similarity
between object displacements, therelative displacement, absolute positionandrelative position
effect metrics can be used. To evaluate the similarity between object rotations, therotation and
orientationeffect metrics can be used. The second row shows the way the corresponding object
(in a different workspace) needs to be moved or rotated by an imitator to match the corresponding
effects. The grey triangles are superimposed to show that for the relative positioneffect metric,
the relative final positions of the objects are the same.

but still satisfy those similarity quantitative criteria.This is shown in the experimental results
presented and discussed in section 9.

8.1.1 Displacement Effect Metrics

The model is moving an object from positionXM to positionX ′

M on the workspace, achieving

an object displacement∆XM = X ′

M − XM , whereXM =

[

xM

yM

]

, X ′

M =

[

x′

M

y′

M

]

, and

∆XM = X ′

M − XM =

[

x′

M − xM

y′

M − yM

]

. The imitator should move the same (or corresponding)

object from positionXI to positionX ′

I on the workspace, with a displacement∆XI = X ′

I −XI ,
such that a displacement metric is minimised (see Fig. 6, left).

Relative Displacement Effect Metric is minimized if∆XI = ∆XM and

X ′

I = XI + ∆XM =

[

xI

yI

]

+

[

x′

M − xM

y′

M − yM

]

=

[

xI + x′

M − xM

yI + y′

M − yM

]

.

Absolute Displacement Effect Metric is minimized ifX ′

I = X ′

M and

∆XI = X ′

M − XI =

[

x′

M − xI

y′

M − yI

]

.
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Relative Position Effect Metric This metric is minimized if the object is moved to a similar
position relative to other objects in the workspace. Therelative positioneffect metric is
defined here for three objects in the workspace.

The center of the manipulated object is defined asA =

[

xA

yA

]

, and the centers of the

other two objects asB =

[

xB

yB

]

andC =

[

xC

yC

]

. The imitator must move the same

(or corresponding) object to form a triangleABC so that it is the “same” as the triangle
formed by the model, i.e. the anglesCÂB, AB̂C andBĈA are equal. The triangle sides
ĀB, B̄C andC̄A can be equal only if the objects start from the same initial configuration
for both agents and are manipulated in the same order, so onlythe equality of the angles
can be used in general11.

Therelative positioneffect metric is minimized if

X ′

I = A and∆XI = A − XI =

[

xA − xI

yA − yI

]

.

8.1.2 Angular Effect Metrics

The model is rotating an object from orientationθM to orientationθ′M on the workspace, with a
rotation∆θM = θ′M − θM . The imitator should rotate the same (or corresponding) object from
orientationθI to orientationθ′I on the workspace, with a rotation∆θI = θ′I − θI , such that a
displacement metric is minimised (see Fig. 6, right).

Rotation Effect Metric is minimized if∆θI = ∆θM andθ′I = θI + ∆θM .

Orientation Effect Metric is minimized ifθ′I = θ′M and∆θI = θ′M − θI .

11GivenCÂBM , AB̂CM , BĈAM andBCI , we can find the other two sidesACI =

√

(1−cos2(AB̂CM))×BC
2

I

(1−cos2(CÂBM ))

andABI =

√

(1−cos2(BĈAM ))×BC
2

I

(1−cos2(CÂBM ))
, to satisfy the equalitiesCÂBI = CÂBM , AB̂CI = AB̂CM andBĈAI =

BĈAM .

Assuming that side BCI lies on the (0, +∞) x-axis with points B =

[

0
0

]

and

C =

[

|BCI |
0

]

corresponding to BI and CI , we can then find a point A =




BC
2

I
−AC

2

I
+AB

2

I

2×BCI√
(−BCI+ACI−ABI)×(−BCI−ACI+ABI )×(−BCI+ACI+ABI )×(BCI+ACI+ABI )

2×BCI



 corresponding to AI ,

such that the equalitiesAB = ABI , BC = BCI andCA = CAI are satisfied.

To findAI we need to rotate and translateA in respect to the actual co-ordinates ofBI =

[

xB

yB

]

andCI =

[

xC

yC

]

in the imitator’s workspace:A =

[

xA

yA

]

=

[

cosφ sinφ

−sinφ cosφ

]

×A +

[

xB

yB

]

, whereφ = tan−1
(

yC−yB

xC−xB

)

.
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8.1.3 Other Effect Metrics

Depending on the initial configuration of the correspondingobjects in the imitator’s workspace,
or the particular task that the imitator would like to achieve, it might be desirable to use also
other metrics that take into account mirror symmetry, both positional and angular, to features of
the environment or other agents. For example:

Mirror Displacement Effect Metric is minimized if∆XI = −∆XM and

X ′

I = XI − ∆XM =

[

xI

yI

]

−
[

x′

M − xM

y′

M − yM

]

=

[

xI − x′

M + xM

yI − y′

M + yM

]

.

Mirror Rotation Effect Metric is minimized if∆θI = −∆θM andθ′I = θI − ∆θM .

Parallel Orientation Effect Metric is minimized ifθ′I = ϑ and∆θI = ϑ − θI , whereϑ is the
orientation of a feature in the environment (e.g. one edge ofthe table). If the features in
the workspace of the imitator are the same as the model’s, then ϑ ≡ θ′M and this metric
becomes equivalent to theorientation effect metric.

8.2 Combinations of Effect Metrics

To evaluate both the movement and the orientation of an object, both metric types must be used.
To match the observed effect, the (corresponding) object needs to be moved on the workspace
according to the displacement given by the displacement effect metric and rotated according to
the angular effect metric used.
A weighted combination of more than one displacement metriccan also be used, by averaging

the displacement vectors that minimise each metric. For example, if ∆Xi =

[

∆xi

∆yi

]

is the

displacement that minimises a displacement effect metrici, andω1, ... ,ωn are the weights of the
n displacement effect metrics to be combined, the displacement that minimizes this composite

metric is then given by∆X =

[

|∆X| × cos(φ)
|∆X| × sin(φ)

]

, where|∆X| = ω1 ×
√

∆x1
2 + ∆y1

2 + ... +

ωn ×
√

∆xn
2 + ∆yn

2 andφ = ω1 × tan−1

(

∆y1

∆x1

)

+ ... + ωn × tan−1

(

∆yn

∆xn

)

.
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9 Experimental Setup

9.1 Demonstrated Task

In the work described in this report, the demonstrated task consists of three block objects (colored
red, green and blue) arranged in a 2D workspace surface by a human who acts as the demonstra-
tor. The workspace is a square grid 50 cm by 50 cm, and the sizesof the objects are: 10 cm by 8
cm (red) and 8 cm by 5 cm (green and blue).
The current work focuses on theeffectsaspect of the demonstrated behaviour, so only the position
and orientation of the objects as they are manipulated by thedemonstrator are captured, omitting
the demonstrator’s actions (arm movements) and states (body posture). Using the Polhemus
LIBERTYTM motion capture system (described in section 7.2.1), a sensor is attached on top of
each object, giving the position of the object’s center and also the object’s orientation relative to
the origin.
In ongoing work, three (or more) additional sensors will be used, one attached to the human
torso and one at each hand, providing additional information about the demonstrator’s states
and actions. Taking into account thestatesaspect would help theJABBERWOCKY system solve
possible ambiguities when producing the corresponding actions for imitation. For example, a
humanoid robot imitator, considering the states of the demonstrator would obtain possibly useful
information e.g. which hand to use (left or right) to reach anobject from its current configuration,
based on the choice of hand used by the demonstrator12.
In section 10, theJABBERWOCKY system is evaluated for combinations of effect metrics on two
target platforms when presented with human demonstrated manipulations of objects.

9.2 Realization of theWhat to Imitate Module

In the current implementation of theJABBERWOCKY system the metrics and the sub-goal granu-
larity are given, instead of discovered by the imitator agents based on the observed demonstrated
task. Thewhat to imitatemodule provides a choice of metrics and granularity based onthe
task and context of the demonstration, although there mightnot always be a unique, “correct”,
choice. Here, the various possible metrics and granularityhave been selected in advance, and
as will be shown, depending on the choice, the character of the resulting matchedeffectscan be
very different.

9.2.1 Sub-goal Granularity

For each demonstration the system captures a total of up to 1000 frames13, each containing the
position and orientation of the objects. The duration of thetask will be usually less than that, so
duplicate frames (where no motion or rotation occurs) must be removed, and the critical points
in the object trajectories found. Going through the frames and looking at position and orientation

12Assuming that the demonstrator uses her/his embodiment in ameaningful way and does not complicate the task
unnecessarily.

13The total duration of the capture will be approximately 10-15 sec.
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data for each object, a critical point for an object is a framewhere the direction of the motion
or the orientation of that object changes more that a certainthreshold. The critical points will
usually occur at different frames for each object during thedemonstration. After the critical
points for each object are found, they are ‘synchronized’ sothat if one or more objects has a
critical point at a certain frame, then this frame is also a critical point for the rest of the objects.
The displacement and rotational information contained in the critical point frames discovered
in this way will be used by theJABBERWOCKY system as the sub-goal granularity for imitating
the task. By changing the thresholds (one for the direction and one for the rotation) we can get
different levels of granularity ranging from fine to coarse,depending on how many critical points
are generated.
This is a very simplistic, yet sufficient for our initial experiments, way to define the sub-goal
granularity of the demonstration in a generic way. In the future, other methods resulting from
the research in WP4.1 will replace the way the sub-goals are extracted from a captured demon-
stration.

9.2.2 Metrics

Combinations ofdisplacementandangulareffect metrics (defined in section 8) are used together
with the sub-goal granularity to define a correspondence problem class (see table 2 in section 4.1)
that an imitator must solve in order to imitate successfully.
The choice ofeffectmetrics to use is currently given to theJABBERWOCKY system by a human
user, and not discovered by the imitator agents. In the future, algorithms and methods developed
in WP4.2 will be integrated, allowing for automatic discovery of appropriate metrics for each
demonstrated task.

9.3 Realization of theHow to Imitate Module

Thehow to imitatemodule considers the giveneffectmetrics and sub-goal granularity, together
with the (possible dissimilar) initial configuration of theobjects in the imitator’s workspace (also
given) to produce initially an embodiment-independent correspondence solution (since only the
effectsaspect are considered).
To discover this correspondence, theJABBERWOCKY system currently uses a simple simulation
of the 2D workspace that can handle various ‘block’ objects moving and rotating around, ac-
counting for object collisions and workspace confines. Thissimulation can replay the captured
model data at a given granularity, displaying the trajectory and orientation of the objects as they
move and rotate on the workspace, from the initial configuration to the final captured frame. In
parallel, starting from a different initial configuration of the same (or different) corresponding
objects on the imitator’s workspace, the simulation produces a sequence of changes to displace-
ment and rotation for each object, that minimize the given effect metrics.
For example if the effect metric used is therelative displacementeffect metric, and the demon-
strator moved an object 10 cm to the right, then in order to minimize the metric, the corresponding
object in the imitator’s workspace must be also moved 10 cm tothe right. But some displace-
ments or rotations, although minimizing the metric, might be invalid because the path or final
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position is occupied by other objects or agents, e.g. if the corresponding object is less than 10
cm away from the right edge of the workspace (because the initial position was different), the
entire move cannot be performed. Thehow to imitatemodule will then have to discover an alter-
native way in the given context (including other agents, static or dynamic obstacles) to achieve
the sameeffectsaccording to the metric. In this case it might be acceptable to move the object
up to the right edge and then continue the rest of the imitative behaviour. In another context, it
might be preferable not to move the object at all. This contextual information should be ideally
provided by thewhat to imitatemodule, based on observations of the currently demonstrated
task and not pre-defined. In the currentJABBERWOCKY implementation, the system attempts to
move (or rotate) the objects until they reach an obstacle (based on simple 2D object collision de-
tection), and then stop, instead of considering another path to reach the position (and/or achieve
the orientation) that minimizes (if possible) the metric used.
In each case, very different correspondences may result from trying to match different aspects of
the demonstration. In the experiments presented in this report (see sections 10.1 and 10.2), the
use of differenteffectmetrics is shown to result in qualitatively different imitative behaviours.
The confines of the workspace and the obstruction of the path by other objects can also influence
the imitative behaviour.
To imitate and achieve similareffectsas the model, an imitator agent will have to adopt this
(largely) embodiment-independent correspondence solution to move and rotate the objects, using
a generated sequence of action command instructions. Theseaction commands will be targeted
to multiple imitator platforms, taking into account the embodiment constraints and restrictions
of imitator embodiments.

9.4 Targeted Imitator Platforms

After generating the embodiment-independent effect correspondence solutions for the corre-
sponding objects in the imitator’s workspace, theJABBERWOCKY system will convert each of
them to a sequence of action commands to be executed by multiple imitator platforms.
Two such targeted platforms are used in the current realization of the system, both implemented
using the WebotsTM robot simulation software.

9.4.1 Three Robots As Objects

In the first imitator platform, the imitator’s workspace contains no objects. Instead, the imitator is
‘embodied’ as three mobile robots, each corresponding to one of the objects manipulated by the
demonstrator. Each robot is square 4cm by 4cm (so in this case, besides dissimilar demonstrator-
imitator embodiments, there is also dissimilar object correspondence, mapping the objects to
mobile robots). The robots can follow the individual trajectories of the objects as arranged by
the demonstrator, but cannot match the orientation (while moving) because they are differential
wheel robots. Therefore theangulareffect aspect will be ignored when they imitate, matching
only thedisplacementeffect aspect.
In the simulation, as the robots move around the workspace, they leave behind a colored trail
(of same color as themselves and their corresponding objects) to help visualize the imitated
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trajectories (see figure 3).
To convert the effect correspondences into a sequence of action commands for this target imitator
platform, each robot is given a sequence of way-points, depending on its corresponding object.
For each of these way-points, the robot must use its differential wheel embodiment to move in a
straight line up to that position in the workspace, and afterreaching the target position, move on
to the next.
All three objects will have the same number of critical points (see section 9.2, above) and as a
result the number of way-points will be the same14 for each robot. But the time it takes each
robot to achieve its current target position will not be the same, depending on the distance it has
to travel. This can result in a ‘synchronization’ problem; the robots may either go through their
sequence of way-points ignoring what the other robots are doing (unless they are obstructing
their way) or the robots can try to synchronize their imitative behaviour by waiting until all three
have reached their current target positions before moving to the next one. In the experiments
presented in this report, the robots are synchronized.

9.4.2 Manipulator and Three Objects

In the second targeted imitator platform, the imitator’s workspace contains three objects, of the
same size and color as the corresponding objects in the demonstrator’s workspace. The imitator
is embodied as a single arm manipulator, positioned above the workspace and able to pick-up,
move and rotate the three objects. This embodiment, although dissimilar to the one of the human
demonstrator, is nevertheless able to match bothdisplacementandangulareffect aspects of the
demonstration.
As the objects are moved (and rotated) around the workspace by the manipulator in the simula-
tion, they leave behind a colored trail (of same color as themselves) to help visualize the imitated
trajectories. The manipulator is shown as a vertical yellowcylinder mounted at the end of a bar
positioned above the workspace (see figure 4).
The action sequence produced by theJABBERWOCKY system will consist of a continuous path15,
with way-points above the current (and future) positions ofthe objects. When the manipulator
is above an object that must be moved, the manipulator picks it up, then moves (together with
the object) to the target position and places the object down(while also, if required, rotating it),
before continuing to the next object.
To match theeffectsat each critical point, the order the manipulator approaches the objects is
the same (red object, green, blue). If no displacement or rotation is required for an object during
each of these turns, that object is ignored, simplifying themanipulator’s path. If more than one
objects were moved at the same time during the demonstration(by the human using both hands)
resulting in a sequence of critical points, this imitator will only be able to match this by moving
(and/or rotating) each object in turn at each critical pointbefore continuing to the next, as it has
a single manipulator.

14Although there probably will be duplicates within the sequence, indicating that the object has to be still.
15For this platform, the path will be closed, starting and ending at a position at the upper left corner of the

workspace.
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10 Evaluation of Experiments

Two experimental runs (each using a different captured demonstration of an object arrangement
task by a human) will be discussed in this report. In each run,after finding the critical points, a
combination of different effect metrics was used (either the sameeffectmetric for all the objects
or a different one for each object) together with dissimilarinitial configuration of the objects (for
the imitator’s workspace) to define several different correspondence problems. TheJABBER-
WOCKY SYSTEM produced corresponding action commands that minimized theeffect metrics
in each case, targeted at the two imitator platforms described above in section 9.4. Using these
action commands, the imitator agents were able to imitate the appropriate effect aspects of the
demonstration and the resulting imitative behaviours werecaptured from the Webots simulation.
Two human demonstrations are discussed here and imitated onboth target platforms with various
effect metrics guiding what aspects to match. (The second experimental run is shown in the
demonstration video - see Appendix A).
The results shown provide examples of theJABBERWOCKY system producing solutions to the
correspondence problemfor multiple targeted platforms and also illustrate the qualitative differ-
ences resulting from using differenteffectmetrics.
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Figure 7:First captured demonstration (left) and the extracted critical points (right). The
colors (red, green and blue) indicate the three different objects. The dotted outlines indicate
the initial position and orientation of the objects, while the solid thick outline the final. For the
demonstration data, the intermediate object’s position and orientation is shown with solid thin
outlines, linearly scaled (at intervals equal to one tenth of the overall trajectory only, for clarity)
to indicate the direction of the movement. For the critical points, each object’s position and
orientation is shown at every critical point, again linearly scaled.
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Figure 8: An example of dissimilar initial object positions. The dotted outlines indicate the
initial position and orientation of the objects in the demonstrator’s workspace (from the demon-
stration shown in figure 7, left) and the solid outlines the (dissimilar) initial configuration of the
objects in the imitator’s workspace.

The first human demonstration is visualized in figure 7. A human user moved (and rotated) the
red object downwards, then the green object to the right and finally the blue object upwards in
his workspace. The captured data are shown in figure 7, left. Using the method described in
section 9.2.1, the critical points were found and are shown in figure 7, right.
The objects in the imitator’s workspace need not have the same initial position and orientation.
Figure 8 shows the initial configuration in the imitator’s workspace (solid outlines) compared to
the initial configuration in the demonstrator’s workspace (dotted outlines). Relative to the initial
object configuration in the demonstrator’s workspace, the red object is translated to the right and
rotated by 90◦, the green object is translated downwards and rotated by 45◦, and the blue object
is translated sideways up and to the left, also rotated slightly.
Using therelative displacementeffect metric, theJABBERWOCKY system produces correspond-
ing action commands that are visualized in figure 9 (left) forthethree robots as objectsimitator
platform. Each robot (the different colors indicate the object correspondence) must move along
the way-points (indicated by the dots) from its initial position (dotted outline) to the final position
(solid outline). The initial and final positions are visualized in the figures as circles (of relative
size to the robots) to show that the orientation of the robotsis not considered. Since the initial
positions are different, but the matched displacements must be the same (due to the metric), the
robots should move with the resulting paths displaced accordingly (red to the right, green down-
wards and blue to the left and up). The corresponding actionsare performed by the robots in the
Webots simulation environment and the resulting imitativebehaviour is captured and shown in
figure 9 (right).
Using therelative displacementand rotation effect metrics, theJABBERWOCKY system also
produces the corresponding action commands shown in figure 10 (left) for themanipulator and
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Figure 9: An example of corresponding action commands for thethree robots as objects
imitator platform (left) and the resulting imitative behav iour (right). Using the critical points
shown in figure 7, starting from the initial positions shown in figure 8, and minimizing therelative
displacementeffect metric, each of the robots must move along the way-points shown (left). The
initial (dotted outline) and final (solid outline) positions are shown as circles, indicating that the
orientation of the robots is not considered (the actual robots are square, but of equivalent size).
Each way-point is indicated as a dot. The robots then performan imitative behaviour (in Webots)
and the captured results from the simulation are shown in theright plot.
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Figure 10:An example of corresponding action commands for themanipulator and three
objects imitator platform (left) and the resulting imitative behav iour (right). Using the criti-
cal points shown in figure 7, starting from the initial positions shown in figure 8, and minimizing
the relative displacementandrotation effect metrics, the manipulator must follow the continu-
ous closed path (starting and ending at the left top corner ofthe workspace) shown as a dotted
line (left). The line in drawn using a gray to black color gradient to indicate the direction of the
path. When reaching an object, the orientation that the object must be rotated to is shown by a
small arrow. The manipulator then performs an imitative behaviour (in Webots) and the captured
results from the simulation are shown in the right plot.
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three objectsimitator platform. The path of the manipulator is shown as a dotted line (drawn
using a gray to black color gradient to indicate the direction), with way-points indicated as dots.
Since this platform can also match theangular effect aspects, the orientation that the objects
should have at each way-point is indicated by an arrow. The manipulator starts from, and returns
back to a position in the top left corner after all theeffectshave been achieved. The object
displacements will be similar to the ones shown in figure 9, with the paths translated according
to the dissimilar initial object positions. The objects will rotate by the same amount as in the
captured demonstration (due to the metric used) but will notmatch the same orientation. For
example, the red object in the imitator’s workspace starts at a right angle relative to its initial
orientation in the demonstrator’s workspace. As a result, the final (and intermediate) orientation
during the imitative behaviour will also be at a right angle relative to the captured demonstration.
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10.1 First Experimental Run: Same Effect Metrics Used for All Objects

To illustrate the differenteffectsresulting from the different correspondence problems defined by
the choice of metrics, we produced action commands using theJABBERWOCKY system and we
captured the imitative behaviours simulated in the two targeted platforms.
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Figure 11: Corresponding action commands for thethree robots as objects imitator plat-
form (top row) and the resulting imitative behaviours (bottom row). Using the critical points
shown in figure 7, starting from the initial positions shown in figure 8, and minimizing theab-
solute displacement(left column),relative displacement(middle column) andrelative position
(right column) effect metrics, each of the robots must move along the way-points shown (top
row). In each case, the robots then perform an imitative behaviour (in Webots) and the captured
results from the simulation are shown in the bottom row.

The corresponding action commands and the resulting effects from using each of the different
displacementeffect metrics (in each case the same metric is used for all the objects) are shown in
figure 11, for thethree robots as objectsimitator platform. The captured demonstration, critical
points and initial imitator’s object configuration are shown in figures 7 and 8. The corresponding
effectsresulting from using therelative displacementeffect metric (figure 11, middle) were dis-
cussed in the previous subsection. Using theabsolute displacementeffect metric (figure 11, left),
the robots must make an initial adjustment of their positions to reach the corresponding object’s
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initial position in the demonstrator’s workspace. For the rest of the imitative behaviour, their
positions (and also their displacements) match precisely those of the corresponding objects from
the demonstration. But using therelative positioneffect metric (figure 11, right), results in qual-
itatively very different trajectories to the ones captured. Nevertheless, the robots move in such a
way to match the relative position effect aspect as the corresponding objects in the demonstration.
The reason for this trajectory distortion is the dissimilarinitial object configuration.
The corresponding action commands and the effects resulting from using combinations of each
of the differentdisplacementandangulareffect metrics (in each case the same metrics are used
for all the objects) are shown in figures 12 and 13 respectively, for themanipulator and three
objectsimitator platform. The captured demonstration, critical points and initial imitator’s object
configuration are shown in figures 7 and 8. The corresponding trajectories resulting from using
each of thedisplacementeffect metrics are similar the ones shown and discussed above for
the three robots as objects, but with the added aspect of the object’s orientation. Whenthe
rotationeffect metric is combined with thedisplacementeffect metrics (figures 12 and 13, middle
columns), the orientation of the objects will be offset fromthe initial object orientation as seen
in figure 8. When theorientationeffect metric is combined with thedisplacementeffect metrics
(figures 12 and 13, left columns), the orientation of the objects will be initially corrected to align
with the object orientation as seen in figure 8, and for the rest of the imitative behaviour it will
match orientation captured in the demonstration. If noangulareffect metric is used (figures 12
and 13, right columns), then the objects will not rotate at all during the imitative behaviour, and
will conserve their initial orientation.
If no displacementeffect metric is used, then the objects will simply stay still in their initial
positions or (if anangulareffect metric is used) spin around.
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Figure 12:Corresponding action commands for themanipulator and three objects imitator
platform. Using the critical points shown in figure 7, starting from theinitial positions shown
in figure 8, and minimizing theabsolute displacement(top row),relative displacement(middle
row), relative position(bottom row),orientation(right column) androtation (middle column)
effect metrics, the manipulator in each case must follow thecontinuous closed path, moving and
rotating the objects accordingly. Note that in the left column, no angular effect metrics are used,
only displacement effect metrics.
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Figure 13:Resulting imitative behaviours using the corresponding action commands shown
in figure 12 for the manipulator and three objects imitator platform. Using the critical
points shown in figure 7, starting from the initial positionsshown in figure 8, and minimizing the
absolute displacement(top row), relative displacement(middle row),relative position(bottom
row), orientation(right column) androtation (middle column) effect metrics, the manipulator in
each case performs an imitative behaviour (in Webots) usingthe corresponding action commands
shown in figure 12 and the captured results from the simulation are shown. Note that in the left
column, no angular effect metrics are used, only displacement effect metrics.
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10.2 Second Experimental Run: Combination of Different Effect Metrics
for Each Object

In contrast to the experimental run presented and discussedin the previous subsection, where the
same metrics were used to match theeffectsof each object, in this subsection a different metric
will be used for each object.
This experimental run is also shown in the demonstration video (see Appendix A).
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Figure 14:Second captured demonstration (left), extracted criticalpoints (middle) and ini-
tial object configurations (right).

The demonstration that is used in this experimental run is shown in figure 14 (left). The human
demonstrator first moves the red object upwards, then the green object sideways to the right and
finally the blue object in such a way that in the last two positions, it forms first aright and then
an isoscelestriangle (approximately) with the other two objects. The critical points are found
and shown in figure 14 (middle). The granularity is more coarse in this case compared to the first
demonstration, as a larger threshold (for direction change) was used to define the critical points.
The initial position of the objects in the imitator’s workspace is shown in figure 14 (right). The
red object is offset sideways down and to the right, and the green object upwards. The blue object
occupies the same initial position.
Three different combinations ofdisplacementeffect metrics are used, shown in figures 15 and
16. Since the objects were not rotated by the demonstrator, no angulareffect metrics were used.
First, the red object matches theabsolute displacementeffect metric, the green object therelative
displacementeffect metric and the blue object therelative positioneffect metric (shown in figures
15 and 16, left columns).

• The final position of the red object (that performs only a single move) will be the same as
one of the corresponding red object in the demonstrator’s workspace (due to the absolute
displacement metric).

• The green object will move sideways to the left, but the trajectory is translated upwards
(due to the relative displacement metric).
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• The blue object will move as to form first aright (when the red and green objects stop
moving) and finally anisoscelestriangle (due to the relative position metric). Because of
the other two objects movements in the early stage of the imitative behaviour, the blue
object will also move (when at the same stage the corresponding blue object remain still
in the demonstration), trying to preserve the relative positions.

Secondly, the red object matches therelative displacementeffect metric, the green object the
relative displacementeffect metric and the blue object therelative positioneffect metric (shown
in figures 15 and 16, middle columns).

• The red object will move a shorter distance, matching the trajectory (translated) of the
corresponding red object in the demonstrator’s workspace (due to the relative displacement
metric).

• The green object will move as in the previous case.

• The blue object will again move to conserve the relative positions and then form the two
triangles, but now due to the position of the red object (different from to the previous case)
the trajectory will be different.

Thirdly, the red object matches therelative positioneffect metric, the green object therelative
displacementeffect metric and the blue object therelative displacementeffect metric (shown in
figures 15 and 16, right columns).

• The red object will move as to conserve its relative positionto the other two objects, re-
sulting in more than one moves (due to the relative position metric).

• The green object will again move as in the two previous cases.

• The blue object, starting from the same initial position, will move using the same trajec-
tory as the corresponding blue object in the demonstrator’sworkspace (due to the relative
displacement metric).

As a result of the particular combination of metrics and the order of the object displacements,
the sameright andisoscelestriangles will not be formed in the last case as in the first two. So,
the choice of a metric will lead to matching of aspects associated with that particular metric, but
may or may not result in matching of other aspects.

10.3 Summary Evaluation

The experiments show the diverse character of different successful imitative behaviours opti-
mized to match particular aspects of the effects of demonstrated human manipulation of ob-
jects. Aspects captured by metrics forabsolute displacement, relative displacement, relative
position, rotation andorientationcould all successfully be matched. The results illustrate the
multi-platform targetability of theJABBERWOCKY system to map human demonstrated manipu-
lations to matching robotics manipulations (in simulation), generalizing to different initial object
configurations.
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Figure 15:Corresponding action commands for themanipulator and three objects imitator
platform (top row) and the resulting imitative behaviours (bottom row). Using the criti-
cal points shown in figure 14 (middle) and starting from the initial positions shown in figure
14 (right), a combination of displacement effect metrics (different for each object, see text for
details) are minimized. In each case, the manipulator then performs an imitative behaviour (in
Webots) and the captured results from the simulation are shown on the bottom row.
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Figure 16:Corresponding action commands for thethree robots as objects imitator platform
(top row) and the resulting imitative behaviours (bottom row). Using the critical points
shown in figure 14 (middle) and starting from the initial positions shown in figure 14 (right),
a combination of displacement effect metrics (different for each object, see text for details) are
minimized. In each case, the robots then perform an imitative behaviour (in Webots) and the
captured results from the simulation are shown on the bottomrow.
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11 Summary, Conclusions and Future Work

11.1 Summary

Qualitatively different kinds of social learning result from matching different combinations of
matchingactions, statesandeffectsat different levels of granularity.
Metrics capture similarity of robot- and human-achievedeffectson the environment, including
e.g. sequences in object manipulation;statesof the body; or effectoractions; or dynamically
varying combinations of these aspects, in order to match demonstrator behaviour (where the
latter two aspects depend more strongly on details of robot embodiment than the former). Metrics
do this by providing formal measures for the degree of matching between two different effects,
states or actions. A choice of metrics and the granularity determineswhat to imitate, and guides
machine learning and solution of thecorrespondence problem, i.e. allowing an imitator robot to
match appropriate features of the behaviour of (e.g. human)demonstrator in order to socially
acquire skills or learn how to perform demonstrated tasks.
This report presents an initial characterization of aspace of effect metricsto use in guiding
various types of robotic imitation and social learning fromhuman demonstrators.
A multitargetable system (JABBERWOCKY) has been developed that can be used with captured
motion data from a human demonstrator to solve the corresponding problem for an imitator
agent (in simulation), according to given effect metrics and granularity. The system generates
high-level, largely embodiment-independent (as currently only theeffectsaspect is considered)
solutions to the correspondence problem, which are then adapted so a particular target imitator
can map sequences of observed effects of the demonstrator onobjects to its own repertoire of
actions as constrained by its own embodiment and by context (possibly different initial configura-
tions of environment and manipulated objects). This work isvalidated in simulation experiments
(including a demo - see Appendix A) and documented in this report.

11.2 Discussion and Conclusions

The experiments with the two target platforms show that depending on which metric is used to
match aspects of demonstrated behaviour, different successful imitative behaviours result.
The experimental results illustrate the multi-platform targetability of theJABBERWOCKY system
to map human demonstrated manipulations to matching robotics manipulations (in simulation),
generalizing to different initial object configurations.
Using the captured demonstrated behaviour and given a fixed effect metric and granularity, it
is clear that the system will be able to generalize human-demonstrated arrangement of objects
across different starting object configurations. For example, for any initial configuration of ob-
jects in a table place-setting, using a previously demonstrated arrangement of the objects and
the absolute displacementandorientationmetrics,JABBERWOCKY would be able to generate
appropriate actions that could be used by any imitator platform (capable of moving and rotating
objects) to reproduce the observed arrangement.
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11.3 Future Work

Building on results from WP4.1 and WP4.2, research on the characterization ofspaces of metrics
and their exploitation will be advanced for use in guiding various types of robotic imitation and
social learning from human demonstrators.
Part of the future work on metrics will further document the space ofeffectmetrics for largely
embodiment-independent imitation. This will provide a more comprehensive characterization
of the scope of what it is possible to imitate, guiding collaborators in the design of task and
skill learning systems that employ robot programming by demonstration with a broadened, yet
constrained, scope and algorithmic and software tools to compute the metrics and generate be-
havioural recipes that can be targeted to multiple, dissimilar imitator platforms.
Multi-platform targeted solutions for the correspondenceproblem (how to imitate) given metrics
and sub-goal structures will be developed further buildingon WP4.2 results, by extending from
implemented simulation systems towards robotic target platforms.
Work on the correspondence problem using theJABBERWOCKY system will allow an imitator
agent to learn how to reproduce gestures (states, actions) and also simple manipulation of objects
(effects).
Work on the characterization of the space of metrics will aidthe design of systems that solve
the what to imitate(i.e. learning the important features of a demonstrated task) by providing
well-characterized spaces of rigorous metrics to capture essential task features.
The social and physical context of imitation will also be treated in forthcoming work at in-
creasing levels of complexity, taking into account e.g. selection of a model, static and dynamic
observation, as well as timing constraints and turn-takinginteraction.
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A Appendix: Notes on the Demonstration Video

An .avi file showing the experiments described in section 10.2 can bedownloaded fromhttp:
//homepages.feis.herts.ac.uk/∼comqaa1/cogniron-D421.avi.
A human is shown arranging three objects (a red, a green and a blue block) on a grid surface
workspace. Theeffectsof this demonstration are captured (see figure 14, left) and the critical
points are found (see figure 14, middle). Starting from a dissimilar initial configuration of the
objects in the imitator’s workspace (see figure 14, right), corresponding actions are generated by
the JABBERWOCKY system for each of the two target imitator platforms (described in sections
9.4.1 and 9.4.2), for three different combinations of effect displacementmetrics (see figures 16,
left and 15, left). The imitator platforms are then shown (simulated in WebotsTM) to imitate the
demonstration using the corresponding actions produced bytheJABBERWOCKY system, starting
from their dissimilar initial configuration and matching each effect metric combinations (see
figures 16, right and 15, right).
The video is encoded using DivX 5.2.1 for Windows. A free version of the codec can be down-
loaded fromhttp://www.divx.com/divx/download/.
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