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Executive Summary

This report gives a brief overview of the work developpedhmtthe first 12 month of RA4, and
within the framework of the workpackage WP4.1. Technicdaile concerning the implementation
and the mathematical foundation of the learning architectas well as most substanciated references
to other approaches to imitation learning can be found irptres-reviewed publications, given in the
references, and which appeared this year as part of the waducted within this workpackage. This
report is complemented by a video of an implementation ofsystem to reproduce an influencial
experiment of developmental psychology on children irata{l], see the technical description in
Section 2.

For recall, workpackage WP4.1 aims at deriving a generatyptd drive robot learning by imitation.
The goal of the research reported in the present documdntis-fold: 1) to determine the constraints
of the demonstrated task; 2) to formulate the task metriedéing on the importance of the task
constraints; 3) to find the optimal controller to imitate thsk given the metric. Note that, in 3 above,
we consider a situation in which there is oarrespondence probleme. demonstrator and imitator
have the same number of degrees of freedom and it is possillefine a subpart of the workspace
in which the imitator's motions can match perfectly that loé idemonstrator given the metric. The
correspondence problem is addressed separately in @dlledd.4.2.1, and as part of WP4.2.

Role of (topic of deliverable) in Cogniron

Learning from observing and reproducing human actionsriddmental to ensure that the robot could
adapt to different environments and users, as well as toetiad robot’s ability for long-life acqui-
sition of complex skills. While prior work in the domain assed that the task representation was
known and was best described by a predefined set of key featueehere address the issue of how to
learn the optimal representation of a given task.

Relation to the Key Experiments

This research will contribute to the KE3 scripearning Skills: Arranging and Interacting with Ob-
jects The script stressed the issue of generalizing over a nuoflimmonstrated tasks. Specifically,
the robot must learn to recognize and reproduce a varietgsitiges, and, by so doing must learn ways
by which it can interact and perform simple manipulation®bjects. The research reported here and
conducted as part of WP4.1 will provide algorithms for emapthe robot to learn the essence of the
demonstrated gestures (Cogniron function CFIR@rning to reproduce gesturgsee Section 1.2.3,
and to extract the key relationships across gesture andtabjetions (Cogniron functio€F-LIG:
Learning Important Features of a Tgskee Sections 1.2.1 and 1.2.2.



1 Evaluation of subgoals extraction algorithm on kinematics data of
human motion and on objects displacement

This section is divided as follows: Section 1.1 introducesflty the novelty of the approach to imita-
tion learning with respect to the current literature. Int®ecl.2, we first describe the general formal-
ism underlying the approach. In Section 2, we briefly sumnesttie application of the approach in a
set of robotics experiments. The reader should refer tagatins [2, 3, 4] for all technical details.

1.1 Approach to Robot Programming by Demonstration

Traditionally, robotics developed highly specific conlieod for the robot to perform a specific set of
tasks in highly constrained and deterministic environmenthis required to embed the controller
with an extensive knowledge of the robot’s architecture @fritk environment. It was soon clear that
such an approach would not scale up for controlling robots multiple degrees of freedom, working
in highly variable environments, such as humanoid robagsiired to interact with humans in their
daily environment.

The field has now moved to developing more flexible and adagibntrol systems, so that the robot
would no longer be dedicated to a single task, and could lpagrammed in a fast and efficient
manner, to match the end-user needs.

Robot learning by imitationalso referred to ambot programming by demonstratioexplores novel
means of implicitly teaching a robot new motor skills [2, %, @his field of research takes inspi-
ration in a large and interdisciplinary body of literatune imitation learning, drawing from studies
in Psychology, Ethology and the Neurosciences [7, 8, 9]. rivige a robot with the ability to imi-
tate is advantageous for at least two reasons: it provideduaal, user-friendly means of implicitly
programming the robot; it constrains the search space cdmbedrning by showing possible and/or
optimal solutions.

Robots programming by demonstration has, by now, becomg toké of research in robotics (see
[10] for a recent overview of core approaches in the domaiprk in that area tackles the devel-
opment of robust algorithms for motor control, motor leagnigestures recognition and visuo-motor
integration.

Two core issues of imitation learning are known“adhat to imitate” and “how to imitate” [11].
What to imitaterefers to the problem of determining which of the featurethefdemonstration are
relevant for the achievement of the task [2]. This is issuthéscore of the WP4.1How to imitate
also referred to as theorrespondence problef], is the problem of transferring an observed motion
into one’s own capabilities. Works tackling this issue htollowed either an approach in which the
correspondence is unigque and the imitation must produceamt,dut parameterizable, reproduction
of the trajectories [12, 13, 7], or an approach in which onlguaset of predefined goals must be
reproduced (e.g. [5, 14, 15, 16]). The “how to imitate” isssi@ddressed as part of WP4.2 and is
complementary to the “what to imitate” issue.

While prior work has concentrated on either of these isseparately, in WP4.1, we take an ap-
proach in which we combines a method for solving tileat to imitateproblem by extracting the
task constraints, with a method for solving th@w to imitateproblem given a set of task constraints.
The present document presents the theoretical framewodewaop for solving thevhat to imitate
problem [2], in incorporating the notion of goal prefererar® including a method for optimizing
the reproductioniow to imitat@. The later step links the work conducted as part of WP4.ldkw
conducted as part of WP4.2.



1.2 Formalism

Let D be the dataset generated by the demonstrator while drivendontrollerU/. U is such that
D(U) = {X, X0, 8}, where, in the case considered heke= {z,i,i} and X0 = {2©,20, 20}
(3-dim Cartesian position, speed and acceleration), &€Hrtesian trajectories of the hand and the
object respectively, and = {0, é,é} (angular position, speed and acceleration) the trajeaibtle
demonstrator’s arm joints.

The imitation process consists, then, of determining aroiet U’, that generates a datade{U’) =
{X", X}, 0"}, such that/, thecost functioror themetricof the imitation task, is minimal.J (D, D') =
0.

Each demonstrated task is defined by a set of constraiatg, ..., S. For each constraint, 3 a con-
troller U, generating a datasély, , such that the associated metfig, is minimal: 6.7y, (Dy,, Dy; ) =
0.

Let be an imitation task in which the demonstrator performarmaberN of variants of the task. While
observing theN demonstrations, the imitator computes the probabifty) that the demonstrator
tried to satisfy the constraint. Given a set of likely constraints, .., s, the imitator computes the
optimal combination of controller§ that satisfy all constraints.

1.2.1 Learningthe constraints

If the task’s constraints are unknown, these must be lealMedhypothesize that the task constraints
consist of all theinvariants and correlations across the data of the dataget and we propose to
determine those by evaluating the probability distributid all variables of the dataset.

Invariants

Let X be a variable generated by the distributi®X = z). Let {z,},n = 1,..N be the N
observations ofX" during the demonstrations: is an invariant ofX if P(X = zy) = 1. The task
constraint is, thusg,, = x, Vn and the cost function is expressed s, z/) = SN |2/, — 2, =
7, = o]

Correlations
Let X andY be two variables generated by the distributiodR6X = z) and P(Y = y). Let
{zp},n =1,..N and{y,,},m = 1,..M be theN andM observations o andY respectively.

X andY are correlated iBli, such thatP(X = z;|Y = y;) = P(X = z;) = P(Y = y;). Such a
correlation can be found by looking at the covariance tabl& @andY’, sincecov(z;,y;) = 0.

If this correlation applies to the time intervgl, .., K|, x can be expressed as a functifrof Y in
that time interval. The constraint representing this datien becomes, then;;, = f(yx) and the
associated cost function i&z', y) = K, ||z} — f(u)].

Therefore, learning the task correlations consists ot, fietermining the interval within which there
is correlation (looking at the covariance matrix) and, thehdetermining the correlation function
f. For the latter, one can use several methods from Machimaitea For instance, in order to
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Figure 1: llustration of a task that combines 3 controllers, satisfying the constraints = 1, .., 3 that do overlap in timel¢ft), and
that do not overlap in timeight).

look for constraints in the temporal precedence across dt@ (ime series), one can use Hidden
Markov Models (HMM) or Time Delay Neural Networks (TDNN); Wi, in order to look at correlated
patterns without temporal correlation, one could use auttretero-associative memory (Hopfield).

1.2.2 Learningthe metric

Let us assume that the task is described by a known set{1,..S} of constraints with correlated
cost functionJ.

We consider two cases:

1) If there are more than one constra@itany given point of timehe total metric or cost function is
the sum of all constraint-based cost functiofg) = -5, w, * J,(t). Learning the metric consists,
then, of determining the weight, of the metric; in their simplest form, these weights can be ex
pressed as); = P(s) the likelihood that the constraigt(invariant or correlation) has been observed
in the dataset. This likelihood reflects the uncertaintpeiséed with the measure of all the variables
that define the constraint.

For instance, if the constraint is a spatio-temporal cati@h such that: = h(f(y)), wheref is the
generative process modeled by an HMM ard) = exp% is a Gaussian noise added to the
output of the HMM, then,P(z = f(y)) is the uncertainty of the measure and is given by the log-

likelihood of the HMM on a new set of measure. This log-likelod models the Gaussian procéss

2) If there is only one constraint at a given time, but sevedaalstraints across the whole duration
of the task i.e.J(T) = Y7, Zﬁ;f Js(t) with S > 1, learning the metric consists of determining
the time intervalg during which each constraint is applied, and of determinitgther the order in
which constraints are satisfied matters, i.e. if the satifa of a given constraint is conditional to the
satisfaction of other constraints.

1.2.3 Learning the controller

Let us assume that both the constraints and the metric anerkrand that there exists a sgi, },
with [ = 1,.., L, of controller that satisfy the constraints= 1,..,.S (there can be more than one
controller that satisfy each constraint).

We consider two cases.

1) If there is only one constraint at a given time (see FigQyéok each constraing, we determine the
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Figure 2: Top: demonstration of an ipsitgp-lef and contralateralt¢p-right) motion of the right armBottom: reproduction by the
humanoid robot of the motion candidate with lowest cost fiamc/. the robot reproduces the contralateral motion of the detnator by
doing an ipsilateral motion with the other arm, that is ctdsethe dot to touch.

optimal controlleru,, that satisfies the constraint.
Here is an example:
The controllerz = us, (y) is a polynomial of order 2, such that,(y) = a -y + b - y* and the cost

function is of the formJ,(z,y) = (y — o) = (a -y + b - y> — yo). The condition for optimality is
=% =0edl=a+b-2=0=a=.;b

In order to ensure that the combination of all controllexggiacontinuous output?, we must add the
following constraint:
Vs 3z, Stug(x) = usy1(x)

2) If there are several constraints co-occurring at the game we must determine the optimal way
to combine the controllers in order to satisfy the compleg&trim.J. In doing so, we must learn a new
controlleru; ; that satisfy two constraintsand;. At this stage, | have no solution for this part; | will

keep working on it

2 Implementation

2.1 Implementation for learning arbitrary gestures

The experiment starts with the (human) demonstrator andrttet) imitator standing in front of a
table, facing each other (see Figure 2). On both sides ofalfie,ttwo colored dots (red and green)
have been stamped at equal distance to the demonstratanaatbi’s starting positions. In a first set
of demonstrations, the demonstrator reaches for each téobatively with left and right arm. If the
demonstrator reaches for the dot on the left handside oétfie with his left arm, it is said to perform
an ipsilateral motion. If conversely the demonstrator heache dot on the right handside of the table
with his left arm, it is said to perform a contralateral matioThen the demonstrator produces the
same ipsilateral and contralateral motions, but withoetgresence of dots.

!Note that the controllers must be chosen such that theygeavtimately a continuous output on the motors.
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Each of these motions are demonstrated five times conselyutin each case, the demonstrator starts
from the same starting position. While observing the dertmatien, the robot tries to make sense of
the experiment by extracting the demonstrator’s intentinderlying the task. l.e. it determines a set
of constraints for the task, by extracting relevant featunea statistical manner. When the demon-
stration ends, the robot computes the trajectory thatfiestibest the constraints extracted during the
demonstration and generates a motion that follows thisdtajy.

The scenario of our experiment is a replication of a set o€pslpgical experiments conducted with
young children and adults [1]. In these experiments, Bakgeand colleagues have shown that chil-
dren have a tendency to substitute ipsilateral for cortBedhgestures, when the dots are present. In
contrast, when the dots are absent from the demonstratiemumber of substitutions drop signifi-
cantly. Thus, despite the fact that the gesture is the sarbetinconditions, the presence or absence
of a physical object (the dot) affects importantly the rejuction. When the object is present, object
selection takes the highest priority. Children, then, lyeglways direct their imitation to the appropri-
ate target object, at the cost of selecting the “wrong” halthien removing the dots, the complexity
of the task (i.e. the number of constraints to satisfy) isel@ged, and, hence, constraints of lower
importance can be fulfilled (such as producing the same gesituusing the same hand). Similar
experiments conducted with adults have corroborated tlessits, by showing that the presence of a
physical object affects the reproductfon

These experiments are informative to robotics, in helpisgletermine how to prioritize constraints
(that we will also name goals throughout this paper) in amgitask (and as such help us solve the
“correspondence problen)! For instance, in the particular scenario, knowing th@ttary of the
demonstrator's arm and hand path might not allow us to déternmequivocally the angular trajec-
tories of the robot’s arm. Indeed, depending on where thyetas located, several constraints (goals)
might compete and satisfying all of those would no alwayd leea solution. For instance, in the case
of contralateral motions, the robot’s arm is too small tohbi@ach the target and perform the same
gesture. In that case, it must find a trade-off between gatgkach of the constraints. This amounts
to determining the importance of each constraint with resfzeone another.

2.1.1 Experimental setup

The demonstrator's motions are recorded by five X-sens ma@msors, attached to the torso and
the upper- and lower-arms. Each sensor provides the 3Dwbsalientation of each segment, by
integrating the 3D rate-of-turn, acceleration and eartflyinetic field, at a rate of 100Hz. The angular
trajectories of the shoulder joint (3 degrees of freedong the elbow (1 degree of freedom) are
reconstructed by taking the torso as referential, with au@cy of 1.5 degrees.

A color-based stereoscopic vision system tracks the 3ipo®f the dots, the demonstrator’s hands,
and the robot's hands at a rate of 15Hz, with an accuracy of 10 ithe system uses two Phillips
webcams with a resolution of 320x240 pixels. The trackinggised on color segmentation of the skin
and the objects in the YCbCr color space.

The humanoid robot is a Fujitsu HOAP-2. It has 25 degreesegfdom (DOF). The robot is 50cm
tall. In this experiment, trajectory control affects onhettwo arms (4 DOFs each). The torso and
legs are set to a constant position to support the robotglstg-up posture.
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2.1.2 Model

In order to reduce the dimensionality of the dataset to aeduddritical features, we pre-segment the
joint angle trajectories and the hand path into a set of kieypocorresponding to the inflexion points.
Encoding of the trajectories follows our earlier work, wshiidden Markov Models (HMMs) [3]. The
preprocessing phase gives us enough information to fix théH&pology, so as to produce highly
structured and accurate models during learning. Thus, eftife 4 joint trajectories is encoded in
one left-right continuous HMM. Each hidden state represenkey featurg in the trajectory, and

is associated with a stochastic representation of the wdislery;, encoding two variables, namely
the time lag between two keypoints and the absolute angle.h@hd path is represented by a single
HMM that encode the keypoints of a Cartesian trajectoryh\8ioutput distributions for each state,
to encode the 3 Cartesian components. The transition pitibiesbP (¢;=j|q;—1=¢) and the emission
distribution p(y;|¢;=i) are estimated by thBaum-Welchterative method. Théorward-algorithmis
used to estimate a log-likelihood value that an observedesezg could have been generated by one
of the model.

Let D = {6,X,0,h} and D" = {©', X', 0,1’} be the datasets generated by the demonstra-
tor and imitator respectively. {91,92,93,94} are the generalized joint angle trajectories over the
demonstrations{#, ¥2, s } the generalized Cartesian trajectory of the hand over thedstrations,
{011, 012, 013} and{oa1, 022, 023} the 3D location of the first and second dot respectively. Wa-co
puted,; = x; — oy; the distance between the hand and the dots at the end of adrgjé, = {1,2}
corresponds to the usage of the left and right arm respéctive

Following the framework developed in [2], we model the taskost function as a weighted linear
combination of metrics applied to 4 sets of variables, ngntied joint angle trajectories, the hand
path, the location of the objects at which actions are digkdthe dots), and the laterality of the
motion (which hand was being used). If we havVe= 4 joint angles for each arm and = 2 objects,
and given the position of the hand and the objects is defindd y3 variables in the Cartesian space,
we define the general cost functidnas:

N

J = a Zwljlg H_Z)
=1
P

+ a9 ZwQ Jo (%}, ])
j=1
O

P
+ a3 Zzw]?f] J3(d;, ;c])

k=1j=1

2In that case, the response latency is used instead of thertimpof errors



Deliverable D4.1.1
31/12/2004
Revision final

COGNIRON
FP6-1ST-002020

0 Omin Omazx

g

Figure 4 Function used to map a standard deviatioto a weight factorw € [0, 1].

+ Qg wy J4(h, h/) (1)

J and.J; are normalized and comprised in the interjgall]. .J = 0 corresponds to a perfect reproduc-
tion. Optimizing the imitation consists of minimizing Thew; are factors that weight the importance
of the associated set of variables. These factors are tedrftom the demonstration and reflect the
variance of the data during the demonstration. The factgmdetermine the relative importance of
each set of variable. In other words, these parameters fixrthertance of each constraint (or goal)
in the overall task, and are fixed by the experimentgrdetermines the importance of reproducing
correctly the joint angle trajectoriesyp that of reproducing the hand patiy; that of placing the hand
at the same distance to the object as in the demonstratiomgrttiat of using the same hand (i.e.
reaching with the same laterality, namely in ipsilateratontralateral fashion). The cost functions
J; € ]0,1] associated with each of these different constraints, dsgaee defined as follows:

Zthl |y — uy

Jip(i, i) = 1— f( ) (@)

T
Js(u, ') = 1—f(ju—]) 3)
Ja(u,u) = |p(u=1) — p(u'=2)] (4)

whereT is the number of data in the trajectory, gnd.=1) the probability to use the left arm during
the demonstrationsf(v) is a transfer function, represented in Figure 4.

f normalizes and bounds each variable within these mininthhaeximal values. This transformation
has for effect to eliminate the effect of the noise, intiansi each variable, so that their relative effect
can be compared.

One way to compare the relative importance of each set ohas (i.e. joint angles, hand path,
distance hand-object and laterality) is to look at theiiakgility. If the variance of a given variable
is high, i.e. showing no consistency across demonstratitie, this means that satisfying some
particular instance of this variable had little bearing be task. If the standard deviation of a given
variable is low, the value taken by its weightshould be close to 1, so that this variable will have
a strong influence in the reproduction of the task. Thus, Withe transfer function in Figure 4, we
define:

j _ f(ay) if yis available .
Y123 = { 0 otherwise Vi (5)
wy = 2|p(h=1)— 0.5 (6)
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Q1= =Q3=0y a1:%a2:ﬁa3 , ay=0
Dots | No dots| Dots No dots
Left contralateral| 0.16 0.14 0.22 0.11
Right ipsilateral | 0.36 | 0.47 | 0.08 0.16

Table 1:value of the cost functiond for the optimal trajectory, used for reproducing the denraiti®n of a contralateral motion with
right hand.

To evaluate the variability (mean standard deviatigh of the angular trajectories and of the hand
path, we make use of the statistical representation prdvigehe HMM. After training of an HMM
with a set of demonstrations of a given trajectory, we useMViterbi algorithmto retrieve the best
sequence of hidden states and associated keypoint valu#isisdrajectory. An estimation of the
standard deviation of the whole trajectories is then coexhutb, represents the importance of using
either the left or right hand (laterality of the imitatiomdhis based on a measure of the probability
with which either hand has been used over the whole set of dsimadions.w, = 0 if there is no
preference.

Once the cost function and the relative influence of eacht@inshave been determined, we generate
an optimal (with respect to the cost functidi trajectory. In order to do this, we first generate a set
of candidate trajectories for the hand path, using the HMMgSiaterpolation. To generate the joint
angles trajectories corresponding to these hand pathsawveeh solve the inverse kinematics equation

given by: & = J6, whereJ is the Jacobian. In order to account for the influence of treentation of
the demonstrator’s joint trajectories, we add another tcaim$ to the pseudo-inverse solution:

0 =3T3 + (1 - 4)d (7)

whered,, is the joint angle trajectory generated by the HMM aftermirag, andy is a factor used to
tune the influence of the two different terms (reproductiémand path or joint angle trajectories).
For each candidate path and associated set of joint trajestave compute the value of the cost
function J. We, then, proceed to determining a local optimum.fdoy gradient-descent on. The
corresponding (locally) optimal trajectory is, then, runtbe robot to reproduce the demonstration.

2.1.3 Results

As expected, we have found little variation in either thejaiajectories, the hand paths, the distance
hand-object or the laterality in any of the 4 tasks, forcing $atisfaction of all constraints during the
reproduction of goal-directed motion. However, the mogaiiant features are those in relation to the
object interaction. When the target dots are not preseei;, #issociated weights?, values are zero.
As there is no more object in the scene, the hand path andrgedtecome then the sole relevant
features to reproduce.

In order to test the influence of the factaxson the performance of the imitation, we have tested
two sets of values.a;=as=a3=ay, i.e. no preference in goals. aﬂq:%agzzag with a4=0 (no
preference in hand). For each set, we computed the optiajattory. Table 1 gives the values of the
cost function in each case.
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Figure 5. Joint angle and hand path plots of 5 demonstrations of aalerat motion with right hand (left column), the trajectory
retrieved by the HMM model of the 5 demonstrations (middlkiem), and reproduction of a new motion (right column). Tleéngs in
the graphs represent the keypoints segmented and retiigvit HMMs. The square and the circle show the position ofwltedots on
the table. Only the shoulder flexion-extension is represefur the joint angles.
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3 FutureWork

In the next 6 months, T12-T18, we will further develop thelgadraction learning algorithm, com-
bining different methods from Machine Learning (such asng€ePCA and independent component
analysis, for inferring the real dimensionality and optirtuncorrelated and/or independent) repre-
sentation of the dataset.

The generality of the extended algorithm will be validateithihe humanoid HOAP-2 robot in a set
of different manipulatory experiments, by varying impoitg the experimental conditions (type of
objects, type of metrics to infer, type of constraints ang features,using different human demon-
strators).

The workplan for months T18-30 is part of a separate docunsestRA4 workplan.
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