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Executive Summary

This report gives a brief overview of the work developped within the first 12 month of RA4, and
within the framework of the workpackage WP4.1. Technical details concerning the implementation
and the mathematical foundation of the learning architecture, as well as most substanciated references
to other approaches to imitation learning can be found in thepeer-reviewed publications, given in the
references, and which appeared this year as part of the work conducted within this workpackage. This
report is complemented by a video of an implementation of thesystem to reproduce an influencial
experiment of developmental psychology on children imitation [1], see the technical description in
Section 2.
For recall, workpackage WP4.1 aims at deriving a general policy to drive robot learning by imitation.
The goal of the research reported in the present document is three-fold: 1) to determine the constraints
of the demonstrated task; 2) to formulate the task metric depending on the importance of the task
constraints; 3) to find the optimal controller to imitate thetask given the metric. Note that, in 3 above,
we consider a situation in which there is nocorrespondence problem, i.e. demonstrator and imitator
have the same number of degrees of freedom and it is possible to define a subpart of the workspace
in which the imitator’s motions can match perfectly that of the demonstrator given the metric. The
correspondence problem is addressed separately in deliverable D.4.2.1, and as part of WP4.2.

Role of (topic of deliverable) in Cogniron

Learning from observing and reproducing human actions is fundamental to ensure that the robot could
adapt to different environments and users, as well as to enable the robot’s ability for long-life acqui-
sition of complex skills. While prior work in the domain assumed that the task representation was
known and was best described by a predefined set of key features, we here address the issue of how to
learn the optimal representation of a given task.

Relation to the Key Experiments

This research will contribute to the KE3 scriptLearning Skills: Arranging and Interacting with Ob-
jects. The script stressed the issue of generalizing over a numberof demonstrated tasks. Specifically,
the robot must learn to recognize and reproduce a variety of gestures, and, by so doing must learn ways
by which it can interact and perform simple manipulations onobjects. The research reported here and
conducted as part of WP4.1 will provide algorithms for enabling the robot to learn the essence of the
demonstrated gestures (Cogniron function CF-RGLearning to reproduce gestures), see Section 1.2.3,
and to extract the key relationships across gesture and object motions (Cogniron functionCF-LIG:
Learning Important Features of a Task), see Sections 1.2.1 and 1.2.2.
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1 Evaluation of subgoals extraction algorithm on kinematics data of
human motion and on objects displacement

This section is divided as follows: Section 1.1 introduces briefly the novelty of the approach to imita-
tion learning with respect to the current literature. In Section 1.2, we first describe the general formal-
ism underlying the approach. In Section 2, we briefly summarize the application of the approach in a
set of robotics experiments. The reader should refer to publications [2, 3, 4] for all technical details.

1.1 Approach to Robot Programming by Demonstration

Traditionally, robotics developed highly specific controllers for the robot to perform a specific set of
tasks in highly constrained and deterministic environments. This required to embed the controller
with an extensive knowledge of the robot’s architecture andof its environment. It was soon clear that
such an approach would not scale up for controlling robots with multiple degrees of freedom, working
in highly variable environments, such as humanoid robots required to interact with humans in their
daily environment.
The field has now moved to developing more flexible and adaptive control systems, so that the robot
would no longer be dedicated to a single task, and could be re-programmed in a fast and efficient
manner, to match the end-user needs.
Robot learning by imitation, also referred to asrobot programming by demonstration, explores novel
means of implicitly teaching a robot new motor skills [2, 5, 6]. This field of research takes inspi-
ration in a large and interdisciplinary body of literature on imitation learning, drawing from studies
in Psychology, Ethology and the Neurosciences [7, 8, 9]. To provide a robot with the ability to imi-
tate is advantageous for at least two reasons: it provides a natural, user-friendly means of implicitly
programming the robot; it constrains the search space of motor learning by showing possible and/or
optimal solutions.
Robots programming by demonstration has, by now, become a key topic of research in robotics (see
[10] for a recent overview of core approaches in the domain).Work in that area tackles the devel-
opment of robust algorithms for motor control, motor learning, gestures recognition and visuo-motor
integration.
Two core issues of imitation learning are known as“what to imitate” and “how to imitate” [11].
What to imitaterefers to the problem of determining which of the features ofthe demonstration are
relevant for the achievement of the task [2]. This is issue isthe core of the WP4.1.How to imitate,
also referred to as thecorrespondence problem[9], is the problem of transferring an observed motion
into one’s own capabilities. Works tackling this issue havefollowed either an approach in which the
correspondence is unique and the imitation must produce an exact, but parameterizable, reproduction
of the trajectories [12, 13, 7], or an approach in which only asubset of predefined goals must be
reproduced (e.g. [5, 14, 15, 16]). The “how to imitate” issueis addressed as part of WP4.2 and is
complementary to the “what to imitate” issue.
While prior work has concentrated on either of these issues separately, in WP4.1, we take an ap-
proach in which we combines a method for solving thewhat to imitateproblem by extracting the
task constraints, with a method for solving thehow to imitateproblem given a set of task constraints.
The present document presents the theoretical framework wedevelop for solving thewhat to imitate
problem [2], in incorporating the notion of goal preferenceand including a method for optimizing
the reproduction (how to imitate). The later step links the work conducted as part of WP4.1 to work
conducted as part of WP4.2.
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1.2 Formalism

Let D be the dataset generated by the demonstrator while driven bya controllerU . U is such that
D(U) = { ~X, ~X0, ~Θ}, where, in the case considered here,~X = {x, ẋ, ẍ} and ~XO = {xO, ẋO, ẍO}
(3-dim Cartesian position, speed and acceleration), are the Cartesian trajectories of the hand and the
object respectively, and~θ = {θ, θ̇, θ̈} (angular position, speed and acceleration) the trajectoryof the
demonstrator’s arm joints.

The imitation process consists, then, of determining a controller U ′, that generates a datasetD′(U ′) =

{ ~X ′, ~X ′
0,

~θ′}, such thatJ , thecost functionor themetricof the imitation task, is minimal:δJ(D,D′) =
0.

Each demonstrated task is defined by a set of constraintss = 1, ..., S. For each constraints, ∃ a con-
trollerUs generating a datasetDUs

, such that the associated metricJUs
is minimal:δJUs

(DUs
,D′

Us
) =

0.

Let be an imitation task in which the demonstrator performs anumberN of variants of the task. While
observing theN demonstrations, the imitator computes the probabilityP (s) that the demonstrator
tried to satisfy the constraints. Given a set of likely constraints1, .., s, the imitator computes the
optimal combination of controllersU ′

s that satisfy all constraints.

1.2.1 Learning the constraints

If the task’s constraints are unknown, these must be learned. We hypothesize that the task constraints
consist of all theinvariants andcorrelations across the data of the datasetD, and we propose to
determine those by evaluating the probability distribution of all variables of the dataset.

Invariants
Let X be a variable generated by the distributionP (X = x). Let {xn}, n = 1, ..N be theN

observations ofX during the demonstrations.x0 is an invariant ofX if P (X = x0) = 1. The task
constraint is, thus,xn = x0,∀n and the cost function is expressed asJ(x, x′) =

∑N
n=1 ‖x

′
n − xn‖ =

‖x′
n − xo‖.

Correlations
Let X and Y be two variables generated by the distributionsP (X = x) and P (Y = y). Let
{xn}, n = 1, ..N and{ym},m = 1, ..M be theN andM observations ofX andY respectively.

X andY are correlated if∃i, such thatP (X = xi|Y = yi) = P (X = xi) = P (Y = yi). Such a
correlation can be found by looking at the covariance table of X andY , sincecov(xi, yi) = 0.

If this correlation applies to the time interval[k, ..,K], x can be expressed as a functionf of Y in
that time interval. The constraint representing this correlation becomes, then,xk = f(yk) and the
associated cost function isJ(x′, y) =

∑K
i=k ‖x

′
i − f(yi)‖.

Therefore, learning the task correlations consists of, first, determining the interval within which there
is correlation (looking at the covariance matrix) and, then, of determining the correlation function
f . For the latter, one can use several methods from Machine learning. For instance, in order to
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Figure 1: Illustration of a task that combines 3 controllersus, satisfying the constraintss = 1, .., 3 that do overlap in time (left), and
that do not overlap in time (right).

look for constraints in the temporal precedence across the data (time series), one can use Hidden
Markov Models (HMM) or Time Delay Neural Networks (TDNN); while, in order to look at correlated
patterns without temporal correlation, one could use auto-or hetero-associative memory (Hopfield).

1.2.2 Learning the metric

Let us assume that the task is described by a known sets = {1, ..S} of constraints with correlated
cost functionJs.

We consider two cases:

1) If there are more than one constraintat any given point of time, the total metric or cost function is
the sum of all constraint-based cost functionsJ(t) =

∑S
s=1 ws ∗ Js(t). Learning the metric consists,

then, of determining the weightws of the metric; in their simplest form, these weights can be ex-
pressed asws = P (s) the likelihood that the constraints (invariant or correlation) has been observed
in the dataset. This likelihood reflects the uncertainty associated with the measure of all the variables
that define the constraint.

For instance, if the constraint is a spatio-temporal correlation such thatx = h(f(y)), wheref is the

generative process modeled by an HMM andh(z) = exp
(a−z)2

b
is a Gaussian noise added to the

output of the HMM, then,P (x = f(y)) is the uncertainty of the measure and is given by the log-
likelihood of the HMM on a new set of measure. This log-likelihood models the Gaussian processh.

2) If there is only one constraint at a given time, but severalconstraints across the whole duration
of the task i.e.J(T ) =

∑S
s=1

∑ts+1

t=ts
Js(t) with S > 1, learning the metric consists of determining

the time intervalsts during which each constraint is applied, and of determiningwhether the order in
which constraints are satisfied matters, i.e. if the satisfaction of a given constraint is conditional to the
satisfaction of other constraints.

1.2.3 Learning the controller

Let us assume that both the constraints and the metric are known, and that there exists a set{usl
},

with l = 1, .., L, of controller that satisfy the constraintss = 1, .., S (there can be more than one
controller that satisfy each constraint).
We consider two cases.
1) If there is only one constraint at a given time (see Figure 1), for each constraints, we determine the
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Figure 2:Top: demonstration of an ipsi- (top-left) and contralateral (top-right) motion of the right arm.Bottom: reproduction by the
humanoid robot of the motion candidate with lowest cost function J . the robot reproduces the contralateral motion of the demonstrator by
doing an ipsilateral motion with the other arm, that is closer to the dot to touch.

optimal controllerusl
that satisfies the constraint.

Here is an example:

The controllerx = usl
(y) is a polynomial of order 2, such thatusl

(y) = a · y + b · y2 and the cost
function is of the formJs(x, y) = (y − y0) = (a · y + b · y2 − y0). The condition for optimality is
δJ = δJ

δx
= 0 ⇔ δJ = a + b · x = 0 ⇒ a = ..; b = ...

In order to ensure that the combination of all controllers gives acontinuous output1, we must add the
following constraint:

∀s ∃x, s.t.us(x) = us+1(x)

2) If there are several constraints co-occurring at the sametime, we must determine the optimal way
to combine the controllers in order to satisfy the complete metricJ . In doing so, we must learn a new
controllerui,j that satisfy two constraintsi andj. At this stage, I have no solution for this part; I will
keep working on it.

2 Implementation

2.1 Implementation for learning arbitrary gestures

The experiment starts with the (human) demonstrator and the(robot) imitator standing in front of a
table, facing each other (see Figure 2). On both sides of the table, two colored dots (red and green)
have been stamped at equal distance to the demonstrator and imitator’s starting positions. In a first set
of demonstrations, the demonstrator reaches for each dot alternatively with left and right arm. If the
demonstrator reaches for the dot on the left handside of the table with his left arm, it is said to perform
an ipsilateral motion. If conversely the demonstrator reaches the dot on the right handside of the table
with his left arm, it is said to perform a contralateral motion. Then the demonstrator produces the
same ipsilateral and contralateral motions, but without the presence of dots.

1Note that the controllers must be chosen such that they provide ultimately a continuous output on the motors.
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Each of these motions are demonstrated five times consecutively. In each case, the demonstrator starts
from the same starting position. While observing the demonstration, the robot tries to make sense of
the experiment by extracting the demonstrator’s intentionunderlying the task. I.e. it determines a set
of constraints for the task, by extracting relevant features in a statistical manner. When the demon-
stration ends, the robot computes the trajectory that satisfies best the constraints extracted during the
demonstration and generates a motion that follows this trajectory.
The scenario of our experiment is a replication of a set of psychological experiments conducted with
young children and adults [1]. In these experiments, Bekkering and colleagues have shown that chil-
dren have a tendency to substitute ipsilateral for contralateral gestures, when the dots are present. In
contrast, when the dots are absent from the demonstration, the number of substitutions drop signifi-
cantly. Thus, despite the fact that the gesture is the same inboth conditions, the presence or absence
of a physical object (the dot) affects importantly the reproduction. When the object is present, object
selection takes the highest priority. Children, then, nearly always direct their imitation to the appropri-
ate target object, at the cost of selecting the “wrong” hand.When removing the dots, the complexity
of the task (i.e. the number of constraints to satisfy) is decreased, and, hence, constraints of lower
importance can be fulfilled (such as producing the same gesture or using the same hand). Similar
experiments conducted with adults have corroborated theseresults, by showing that the presence of a
physical object affects the reproduction2.
These experiments are informative to robotics, in helping us determine how to prioritize constraints
(that we will also name goals throughout this paper) in a given task (and as such help us solve the
“correspondence problem”). For instance, in the particular scenario, knowing the trajectory of the
demonstrator’s arm and hand path might not allow us to determine unequivocally the angular trajec-
tories of the robot’s arm. Indeed, depending on where the target is located, several constraints (goals)
might compete and satisfying all of those would no always lead to a solution. For instance, in the case
of contralateral motions, the robot’s arm is too small to both reach the target and perform the same
gesture. In that case, it must find a trade-off between satisfying each of the constraints. This amounts
to determining the importance of each constraint with respect to one another.

2.1.1 Experimental setup

The demonstrator’s motions are recorded by five X-sens motion sensors, attached to the torso and
the upper- and lower-arms. Each sensor provides the 3D absolute orientation of each segment, by
integrating the 3D rate-of-turn, acceleration and earth-magnetic field, at a rate of 100Hz. The angular
trajectories of the shoulder joint (3 degrees of freedom) and the elbow (1 degree of freedom) are
reconstructed by taking the torso as referential, with an accuracy of 1.5 degrees.
A color-based stereoscopic vision system tracks the 3D-position of the dots, the demonstrator’s hands,
and the robot’s hands at a rate of 15Hz, with an accuracy of 10 mm. The system uses two Phillips
webcams with a resolution of 320x240 pixels. The tracking isbased on color segmentation of the skin
and the objects in the YCbCr color space.
The humanoid robot is a Fujitsu HOAP-2. It has 25 degrees of freedom (DOF). The robot is 50cm
tall. In this experiment, trajectory control affects only the two arms (4 DOFs each). The torso and
legs are set to a constant position to support the robot’s standing-up posture.
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Figure 3:A left-right continuous HMM with 5 hidden states and 2 outputvariablesyt andy′

t
. P (qt=j|qt−1=i) is the probability to go

from statei to statej at timet. p(yt|qt=i) andp(y′

t
|qt=i) are the emission distributions of variablesyt andy′

t
while in statei.

2.1.2 Model

In order to reduce the dimensionality of the dataset to a subset of critical features, we pre-segment the
joint angle trajectories and the hand path into a set of keypoints, corresponding to the inflexion points.
Encoding of the trajectories follows our earlier work, using Hidden Markov Models (HMMs) [3]. The
preprocessing phase gives us enough information to fix the HMM topology, so as to produce highly
structured and accurate models during learning. Thus, eachof the 4 joint trajectories is encoded in
one left-right continuous HMM. Each hidden state represents a key featurej in the trajectory, and
is associated with a stochastic representation of the observableyj, encoding two variables, namely
the time lag between two keypoints and the absolute angle. The hand path is represented by a single
HMM that encode the keypoints of a Cartesian trajectory, with 3 output distributions for each state,
to encode the 3 Cartesian components. The transition probabilities P (qt=j|qt−1=i) and the emission
distributionp(yt|qt=i) are estimated by theBaum-Welchiterative method. Theforward-algorithmis
used to estimate a log-likelihood value that an observed sequence could have been generated by one
of the model.
Let D = {Θ,X,O, h} and D′ = {Θ′,X ′, O′, h′} be the datasets generated by the demonstra-
tor and imitator respectively.{~θ1, ~θ2, ~θ3, ~θ4} are the generalized joint angle trajectories over the
demonstrations,{~x1, ~x2, ~x3} the generalized Cartesian trajectory of the hand over the demonstrations,
{o11, o12, o13} and{o21, o22, o23} the 3D location of the first and second dot respectively. We com-
putedkj = xj − okj the distance between the hand and the dots at the end of a trajectory. h = {1, 2}
corresponds to the usage of the left and right arm respectively.
Following the framework developed in [2], we model the task’s cost function as a weighted linear
combination of metrics applied to 4 sets of variables, namely the joint angle trajectories, the hand
path, the location of the objects at which actions are directed (the dots), and the laterality of the
motion (which hand was being used). If we haveN = 4 joint angles for each arm andO = 2 objects,
and given the position of the hand and the objects is defined byP = 3 variables in the Cartesian space,
we define the general cost functionJ as:

J = α1

N
∑

i=1

wi
1 J1(~θi, ~θ

′
i)

+ α2

P
∑

j=1

w
j
2 J2(~xj , ~x

′
j)

+ α3

O
∑

k=1

P
∑

j=1

w
kj
3 J3(dkj , d

′
kj)

2In that case, the response latency is used instead of the proportion of errors
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Figure 4:Function used to map a standard deviationσ to a weight factorw ∈ [0, 1].

+ α4 w4 J4(h, h′) (1)

J andJi are normalized and comprised in the interval[0, 1]. J = 0 corresponds to a perfect reproduc-
tion. Optimizing the imitation consists of minimizingJ . Thew

j
i are factors that weight the importance

of the associated set of variables. These factors are extracted from the demonstration and reflect the
variance of the data during the demonstration. The factorsαi determine the relative importance of
each set of variable. In other words, these parameters fix theimportance of each constraint (or goal)
in the overall task, and are fixed by the experimenter.α1 determines the importance of reproducing
correctly the joint angle trajectories,α2 that of reproducing the hand path,α3 that of placing the hand
at the same distance to the object as in the demonstration andα4, that of using the same hand (i.e.
reaching with the same laterality, namely in ipsilateral orcontralateral fashion). The cost functions
Ji ∈ [0, 1] associated with each of these different constraints, or goals, are defined as follows:

J1,2(~u, ~u′) = 1 − f(

∑T
t=1 |ut − u′

t|

T
) (2)

J3(u, u′) = 1 − f(|u − u′|) (3)

J4(u, u′) = |p(u=1) − p(u′=2)| (4)

whereT is the number of data in the trajectory, andp(u=1) the probability to use the left arm during
the demonstrations.f(v) is a transfer function, represented in Figure 4.
f normalizes and bounds each variable within these minimal and maximal values. This transformation
has for effect to eliminate the effect of the noise, intrinsic to each variable, so that their relative effect
can be compared.
One way to compare the relative importance of each set of variables (i.e. joint angles, hand path,
distance hand-object and laterality) is to look at their variability. If the variance of a given variable
is high, i.e. showing no consistency across demonstrations, then, this means that satisfying some
particular instance of this variable had little bearing on the task. If the standard deviation of a given
variable is low, the value taken by its weightw should be close to 1, so that this variable will have
a strong influence in the reproduction of the task. Thus, withf the transfer function in Figure 4, we
define:

w
j
1,2,3 =

{

f(σ̄y) if y is available
0 otherwise

∀j (5)

w4 = 2 |p(h=1) − 0.5| (6)
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α1=α2=α3=α4 α1=1
2α2=1

4α3 , α4=0
Dots No dots Dots No dots

Left contralateral 0.16 0.14 0.22 0.11
Right ipsilateral 0.36 0.47 0.08 0.16

Table 1:Value of the cost functionsJ for the optimal trajectory, used for reproducing the demonstration of a contralateral motion with
right hand.

To evaluate the variability (mean standard deviationσ̄y) of the angular trajectories and of the hand
path, we make use of the statistical representation provided by the HMM. After training of an HMM
with a set of demonstrations of a given trajectory, we use theViterbi algorithm to retrieve the best
sequence of hidden states and associated keypoint values for this trajectory. An estimation of the
standard deviation of the whole trajectories is then computed. w4 represents the importance of using
either the left or right hand (laterality of the imitation) and is based on a measure of the probability
with which either hand has been used over the whole set of demonstrations.w4 = 0 if there is no
preference.
Once the cost function and the relative influence of each constraint have been determined, we generate
an optimal (with respect to the cost functionJ) trajectory. In order to do this, we first generate a set
of candidate trajectories for the hand path, using the HMMs and interpolation. To generate the joint
angles trajectories corresponding to these hand paths, we have to solve the inverse kinematics equation

given by:~̇x = J~̇θ, whereJ is the Jacobian. In order to account for the influence of the observation of
the demonstrator’s joint trajectories, we add another constraint to the pseudo-inverse solution:

~̇
θ = γ(J+~̇x) + (1 − γ)~θd (7)

where~θd is the joint angle trajectory generated by the HMM after training, andγ is a factor used to
tune the influence of the two different terms (reproduction of hand path or joint angle trajectories).
For each candidate path and associated set of joint trajectories, we compute the value of the cost
function J . We, then, proceed to determining a local optimum forJ by gradient-descent onγ. The
corresponding (locally) optimal trajectory is, then, run on the robot to reproduce the demonstration.

2.1.3 Results

As expected, we have found little variation in either the joint trajectories, the hand paths, the distance
hand-object or the laterality in any of the 4 tasks, forcing the satisfaction of all constraints during the
reproduction of goal-directed motion. However, the most invariant features are those in relation to the
object interaction. When the target dots are not present, their associated weightswj

3 values are zero.
As there is no more object in the scene, the hand path and gestures become then the sole relevant
features to reproduce.
In order to test the influence of the factorsα on the performance of the imitation, we have tested
two sets of values.α1=α2=α3=α4, i.e. no preference in goals. andα1=1

2α2=1
4α3 with α4=0 (no

preference in hand). For each set, we computed the optimal trajectory. Table 1 gives the values of the
cost function in each case.
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Figure 5: Joint angle and hand path plots of 5 demonstrations of a contraleral motion with right hand (left column), the trajectory
retrieved by the HMM model of the 5 demonstrations (middle column), and reproduction of a new motion (right column). The points in
the graphs represent the keypoints segmented and retrievedby the HMMs. The square and the circle show the position of thetwo dots on
the table. Only the shoulder flexion-extension is represented for the joint angles.

Page 11



COGNIRON
FP6-IST-002020

Deliverable D4.1.1
31/12/2004

Revision final

3 Future Work

In the next 6 months, T12-T18, we will further develop the goal-extraction learning algorithm, com-
bining different methods from Machine Learning (such as Kernel PCA and independent component
analysis, for inferring the real dimensionality and optimal (uncorrelated and/or independent) repre-
sentation of the dataset.
The generality of the extended algorithm will be validated with the humanoid HOAP-2 robot in a set
of different manipulatory experiments, by varying importantly the experimental conditions (type of
objects, type of metrics to infer, type of constraints and key features,using different human demon-
strators).
The workplan for months T18-30 is part of a separate document, see RA4 workplan.
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