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Executive Summary

This report summarises our research results regarding human attribute model and posture estimation
for a mobile robot companion. First of all a short view over the geometric model and the data structure
all partners of RA2 decided to use will be given. Next a summary of human kinematics will be given,
which, together with the geometric model, form the human attribute model. The report goes on with a
summary on our results on pose estimation, which is based on some published or internal scientific
reports. First the results on deictic gesture recognition based on 2D information will be presented. A
skin colour based hand tracking was developed to estimate trajectories to objects. This algorithm can
operate with a single 2D colour camera. Afterwards the results on 3D pose estimation of the upper
body part will be summarised. In this approach the geometric human model is used to estimate the
positions of body parts in data from 3D sensors. The scientific reports referred to are attached to this
report.

Role of human attribute model and posture estimation in
Cogniron

Communication with humans is essential for a cognitive robot companion and one way of natural
communication for humans are gestures. Therefore a robot companion must be able to recognise and
understand gestures. In addition to communication interaction and learning are two essentials. For
both a robot needs to be aware of what are the humans doing how. The knowledge of human attributes
and kinematics as well as algorithms to estimate the positions of human body parts are bases for these
functionalities. This report describes a solid base for these cognitive abilities.

Relation to the Key Experiments

The here presented results are important for all key-experiments. In KE1 “Robot Home Tour” the
human uses deictic gestures to show and tell the robot objects in the different rooms. In KE2 “Curious
Robot” the robot should observe the humans activities and therefore needs to estimate the humans
posture over time. This is also important for KE3 “Skill and Task Learning” where the robot should
learn new abilities from observing the human’s motions and activities. The human attribute model
helps the robot to map the observed motions to its own kinematics.
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1 Human attribute model and posture estimation

Starting with the human attribute model the geometric human model and its data structure will be
shown. In addition to this, the human kinematics and their use for estimating information will be
explained. The second part will then give a summary of the published scientific paper and the internal
reports regarding the posture estimation.

1.1 Geometric human model

The geometric human model the partners of RA2 decided on is a cylinder-based model, which can be
adapted to the proportions of the represented human. Therefore all cylinders are “degenerated” (also
see [2]), which means it has two parallel ellipses having the same rotation. These cylinders are
described with five parameters, which are:

e Major-semi axis of ellipsis at cylinder beginning
e Minor-semi axis of ellipsis at cylinder beginning
e Major-semi axis of ellipsis at cylinder end

e Minor-semi axis of ellipsis at cylinder end

Length of cylinder
The basic model consists of, but is not limited to ten cylinders:
e Two for upper arms
e Two for lower arms
e Two for upper legs
e Two for lower legs
One for the torso

One for the head

The geometric human model is shown in picture 1.
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1.2 Data structure for geometric human model

For all future work within the consortium it was necessary to decide on a uniform data structure for the
geometric human model described in 1.1. This data structure should enable the exchange and
combination of algorithms within the consortium without the need to adapt interfaces. The structure is
build up in a way, that all limbs of the model are linked to a parent limb. The only exception is the
base limb, namely the torso, which all other limbs are directly or indirectly connected to. This
structure makes it possible to add limbs if necessary, e.g. one limb for the hand, one for each finger or

three for each finger.

Each limb contains information about the parent limb, potential child limbs, its own position and
orientation relative to the parent limb or in world coordinates. To put flesh on the bones each limb has
the five parameters for the cylinders described in 1.1. There is also space reserved for information for
specific algorithms like maximum possible angles. An overview of the data structure is shown in

picture 2.
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Picture 2: Data

structure for human CIass Limb

model
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double theta;
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double velPhi; Point2D *polygonPoint;
double velTheta; ;
’ scorin
double velPsi; ) 9
int  numCues;
JointAngleLimits* angleLimits; double” cueVals;

SolidParameters* solidParams;
AlgorithmData* algorithmData;

1.3 Human kinematics

In order to get a robust estimation of the pose of a human in an all day environment it is necessary to
have some basic knowledge of human kinematics. In [3] the important joints with their maximum
angles, as well as all aspect ratios of human limbs are described. The geometric human model
described in 1.1 covers all these joints and limbs. To get good results for the maximum number of
humans, only average values have been taken. Higher maximum angles from taking exercises or lower
angles from injury or diseases are not considered. In a later phase the angles will be adaptive, so that
every human gets an own set. Not every junction has three degrees of freedom as the data structure of
the model provides. Regarding the degrees of freedom of a joint, one or two angles are set to zero.
Other important aspects of human kinematics are the average measurements of body parts and the
aspect ratio between body height and body parts. These measurements can also be found in [3]. It is
interesting and very useful, that the aspect ratios stay the same at different body heights. Slight
differences can be found between the aspect ratios of male and female humans. This might become
useful for distinguishing between the genders.

A glossary for the Greek and Latin terms can be found in [4].

1.4 Detection of deictic gestures

As pointing gestures are important for key-experiment 1 “Robot Home Tour” the detection of these
gestures was separated from the 3D pose estimation at first. The in [1] presented approach analyses
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data from a 2D colour camera to detect the hands of a human. The deictic gesture is recognised
through the extension of a trajectory recognition algorithm based on particle filtering with symbolic
information from the objects in the vicinity of the pointing hand. The size of the vicinity is adapted by
the context to get optimal results. Latest optimisations brought the processing speed of the algorithm
presented in [1] on a normal PC up to 15 frames per second. Another project of one partner deals with
an approach of detecting deictic gestures in 3D from monocular colour images described in [5]. The
scientific outcome of this project is also useful for the 3D pose estimation in Cogniron.

1.5 3D pose estimation

For the estimation of human poses in 3D the iterative closest point algorithm is used to fit the
geometric human model described in 1.1 to 3D sensor data. This algorithm finds a rotation and
translation for the cylinders such that the error between the model and the 3D data points becomes
minimal. Therefore corresponding points for the data points must be found on the surface of the
cylinders. Checking all points with all cylinders finds the corresponding cylinder to a set of data
points. This check and the iterative closest point algorithm are performed iteratively. First results of
this algorithm with the upper part of the body model (consisting of 6 cylinders) can be found in [2].

2 Future work

The results of the approaches presented in [1] and [2] showed, that it is possible to estimate the pose of
a human with one sensor in really simple environments. As in Cogniron a robot companion needs to
operate very robust in all day environments, these approaches have to be combined into a multi modal
gesture recognition based on both 2D and 3D data. Also the algorithms itself need to be tested and
optimised more, as 7.5 frames per second for detection is quiet good for now, but still not the end of
the road. In [1] only one arm, in [2] only the upper body parts are detected. In the future the whole
body has to be taken into account for pose estimation, because gesture recognition and activity
detection need to see the whole human in order to give a correct interpretation.

Future work on the human model will focus on the kinematics and the verification of the outputs of the
pose estimation algorithms. With the maximum angles and angular speeds of body parts the estimated
positions can be verified and corrected if necessary. These angles and speeds, first fixed for all
individuals, will be adapted over time for humans in the robots daily environment. The knowledge of
the human anatomy and the relations between body parts will be used to estimate size and position of
parts that are out of the robots sight.

3 References

[1] N. Hofemann and J. Fritsch and G. Sagerer. Recognition of Deictic Gestures with Context. In
DAGMO04, pages 334-341, Springer-Verlag, Heidelberg, Germany, 2004

[2] S. Vacek. 3D pose estimation of human body. University of Karlsruhe internal report, 2004
[3] A. Freisinger and K. Pfeiffer. Values of human kinematics. /P4 internal report, 2004
[4] A. Freisinger and K. Pfeiffer. Glossary of human kinematics. /PA internal report, 2004

[5] J. Schmidt and J. Fritsch and G. Sagerer. Real-time 3d hand and arm tracking from monocular
color images. Draft for ICIP, 2005

Appendix

Attached scientific paper and internal reports (see references)
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Recognition of Deictic Gestures with Context

Nils Hofemann, Jannik Fritsch, and Gerhard Sagerer

Applied Computer Science
Faculty of Technology, Bielefeld University
33615 Bielefeld, Germany
{nhofeman, jannik, sagerg®@techfak.uni-bielefeld.de

Abstract. Pointing at objects is a natural form of interaction between humans
that is of particular importance in human-machine interfaces. Our goal is the
recognition of such deictic gestures on our mobile robot in order to enable a
natural way of interaction. The approach proposed analyzes image data from the
robot's camera to detect the gesturing hand. We perform deictic gesture recog-
nition through extending a trajectory recognition algorithm based on particle fil-
tering with symbolic information from the objects in the vicinity of the acting
hand. This vicinity is specified by eontext areaBy propagating the samples
depending on a successful matching between expected and observed objects the
samples that lack a corresponding context object are propagated less often. The
results obtained demonstrate the robustness of the proposed system integrating
trajectory data with symbolic information for deictic gesture recognition.

1 Introduction

In various human-machine interfaces more human-like forms of interaction are devel-
oped. Especially for robots inhabiting human environments, a multi-modal and human
friendly interaction is necessary for the acceptance of such robots. Apart from the inten-
sively researched areas of speech processing that are necessary for dialog interaction,
the video-based recognition of hand gestures is a very important and challenging topic
for enabling multi-modal human-machine interfaces that incorporate gestural expres-
sions of the human.

In every-day communication deictic gestures play an important role as it is intuitive
and common for humans to reference objects by pointing at them. In contrast to other
types of gestural communication, for example sign language [10], deictic gestures are
not performed independently of the environment but stand in a context to the referenced
object. We concentrate on pointing gestures for identifying medium sized objects in an
office environment. Recognizing deictic gestures, therefore, means not only to classify
the hand motion agointingbut also to determine the referenced object. Here we do not
consider referencing object details. We will focus on the incorporation of the gesture

* The work described in this paper was partially conducted within the EU Integrated Project
COGNIRON ("The Cognitive Companion”) funded by the European Commission Division
FP6-IST Future and Emerging Technologies under Contract FP6-002020 and supported by the
German Research Foundation within the Graduate Program 'Task Oriented Communication’.



context, i.e., the referenced object, into a motion-based gesture recognition algorithm
resulting in a more robust gesture recognition.

According to Bobick [3], human motion can be categorized into three classe®-
ment activity, andaction Each category represents a different level of recognition com-
plexity: A movemenhas little variation in its different instances and is generally only
subject to linear scalings, e.g., it is performed at different speedsactivity is de-
scribed by a sequence of movements but can contain more complex temporal variations.
Both, movemenandactivity do not refer to elements external to the human performing
the motion. Interesting for our view on deictic gestures is the @asenthat is defined
by an activity and an associated symbolic information (e.g., a referenced object). Obvi-
ously, a deictic gesture 'pointing at object X' can be described with this motion schema.
Here, the low level movements are accelerating and decelerating of the pointing hand
and the activity is a complegpproachmotion. Combining this activity of the pointing
hand with the symbolic data denoting the referenced object X results in recognizing the
action 'pointing at object X'. Due to the characteristics of pointing gestures we employ
a 2D representation for the hand trajectory based on the velocity and the change of
direction of the acting hand in the image.

An important topic for deictic gesture recognition is binding the motion to a sym-
bolic object: During a pointing gesture the hand approaches an object. Using the di-
rection information from the moving hand, an object can be searched in an appropriate
search region. If an object is found, a binding of the object to the hand motion can be
established. We will show how this binding can be performedng processing of the
trajectory data resulting in an integrated approach combining sensory trajectory data
and the symbolic object data for recognizing deictic gestures with context. We intend
to use this recognition system for the multi-modal human-machine interface on-board
a mobile robot allowing humans to reference objects by speech and pointing [8].

In this paper we will first discuss related work on gesture recognition in Section 2.
Subsequently, we give in Section 3 an overview of the presented system and the used
modules. The Particle Filtering algorithm applied for activity recognition is described
in Section 4. In Section 5 we show how this algorithm is combined with symbolic object
data for recognition of deictic gestures. In Section 6 results of the system acquired in a
demonstration scenario are presented, we conclude the paper with a short summary in
Section 7.

2 Related Work

Although there is a large amount of literature dealing with gesture recognition, only
very few approaches have actually attacked the problem of incorporating symbolic con-
text into the recognition task. One of the first approaches exploiting hand motions and
objects in parallel is the work of Kuniyoshi [7] on qualitative recognition of assembly
actions in a blocks world domain. This approach features an action model capturing the
hand motion as well as an environment model representing the object context. The two
models are related to each other by a hierarchical parallel automata that performs the
action recognition.



An approach dealing with the recognition of actions in an office environment is
the work by Ayers and Shah [1]. Here a person is tracked based on detecting the face
and/or neck with a simple skin color model. The way in which a person interacts with
an object is defined in terms of intensity changes within the object’s image area. By
relating the tracked person to detected intensity changes in its vicinity and using a finite
state model defining possible action sequences, the action recognition is performed.
Similar to Kuniyoshi’s approach, no explicit motion models are used.

An approach that actually combines both types of information, sensory trajectory
data and symbolic object data, in a structured framework is the work by Moore et al. [9].
Different image processing steps are carried out to ohitastge-basedobject-based
andaction-basectvidences for objects and actions. Moore et al. analyze the trajectory
of a tracked hand with Hidden-Markov-Models trained offline on different activities
related to the known objects to obtain thetion-basedvidence.

Only the approach by Moore et al. incorporates the hand motion, while the ap-
proaches by Kuniyoshi and Ayers and Shah rely only on the hand position. However,
in the approach of Moore et al. the sensory trajectory information is used primarily
as an additional cue for object recognition. We present in the following an approach
for reaching the oppositional goal of recognizing gestures with the help of symbolic
information.

3 System Overview

Due to the requirements of a fluent conversation between a human and a machine, the
system for recognizing deictic gestures has to work in real-time. The overall deictic ges-
ture recognition system is depicted in Fig. 1. The first two modules depicted at the left
are designed for operating directly on the image data. The module on the top extracts the
trajectory of the acting hand from the video data by detecting skin-colored regions and
tracking these region over time (for details see [4], chapter 4). The resulting regions are
tracked over time using a Kalman filter with a constant acceleration model. The mod-
ule at the bottom performs object recognition in order to extract symbolic information
about the objects situated in the scene. This module is based on an algorithm proposed
by Viola and Jones [11]. In this paper we focus on the action recognition module which
contains an activity recognition algorithm that is extended to incorporate symbolic data
from the object recognition. In this way, a recognition of deictic gestures with incorpo-
ration of their context is realized. The recognition results of the system can facilitate a
multi-modal human-machine-interface.

. ‘ skin color segmentation}—»‘hand tracking trajectory data
activity !
- = recoghition|

symbolic object data deictic gesture recognition

object recognition

Fig. 1. Architecture of the deictic gesture recognition system.



4 Activity Recognition

Based on the trajectory generated by the acting hand of the human we can classify this
trajectory. Since the start and end points of gestures are not explicitly given it is advan-
tageous if the classification algorithm implicitly selects the relevant parts of a trajectory
for classification. Additionally, as the same gestures are usually not identically executed
the classification algorithm should be able to deal with a certain variability of the tra-
jectory. The algorithm selected for segmentation and recognition of activities is based
on theConditional Density PropagatiofCONDENSATION) algorithm which is a par-

ticle filtering algorithm introduced by Isard and Blake to track objects in noisy image
sequences [5]. In [6] they extended the procedure to automatically switch between sev-
eral activity models to allow a classification of the activities. Black and Jepson adapted
the CONDENSATION algorithm in order to classify the trajectories of commands drawn

at a blackboard [2].

Our approach is based on the work of Black and Jepson. Activities are represented
by parameterized models which are matched with the input data. In contrast to the
approach presented by Black and Jepson where motions are represented in an image
coordinate system4z, Ay) , we have chosen a trajectory representation that consists
of the velocity Ar and the change of directiad~. In this way we abstract from the
absolute direction of the gesture and can represent a wide range of deictic gestures with
one generic model. As the user typically orients himself towards the dialog partner the
used representation can be considered view-independent in our scenario.

Each gesture modeh consists of a 2-dimensional trajectory, which describes the
motion of the hand during execution of the activity.

m) = {x¢,x1,...,x7}, Xt = (Ar, Ay) (1)

For comparison of a modeh (") with the observed data, = (Ary, Avyy) the pa-
rameter vectos; is used. This vector defines the sample of the activity mpdehere
the time indexp indicates the current position within the model trajectory at tinTehe
parametety is used for amplitude scaling whitedefines the scaling in time dimension.

St = (Mt,¢t70¢t,f)t) (2

The goal of the ©NDENSATION algorithm is to determine the parameter veetor
so that the fit of the model trajectory with the observed dats maximized. This is
achieved by temporal propagation§fweighted samples

{67, s, m) ®)

which represent the a posteriori probabilitis;|z;) at time¢. The Weightwt(") of the
samplest") is the normalized probability(z|s}"). This is calculated by comparing
each scaled component of the model trajectory in thedatine steps with the ob-
served data. For calculating the difference between model and observed data a Gaussian
density is assumed for each point of the model trajectory.

The propagation of the weighted samples over time consists of three steps and is
based on the results of the previous time step:



Select: Selection ofV sample‘zsgﬁ)1 according to their respective Weigah&f)1 fromthe
sample pool at timeé — 1. This selection scheme implies a preference for samples
with high probability, i.e., they are selected more often.

Predict: The parameters of each sampﬁ@) are predicted by adding Gaussian noise
to ay_; andp;_; as well as to the position, _; that is increased in each time step
by p,. If ¢, is larger than the model length,,., a new samplet”) is initialized.

Update: Determination of the weights.™ based om(z|s\").

Using the weighted samples obtained by these steps the classification of activities
can be achieved. The probability that a certain made$ completed at time t is given
by its so-called end-probabilify..q (x; ). This end probability is the sum of all weights
of a specific activity model witld; > 0.9¢,ax-

For the overall recognition system the repertoire of activities consisapmoach
andrest The modetestis used to model the time periods where the hand is not moving
at all. With these models the trajectory-based recognition of deictic gestures can be
performed.

5 Recognition of Pointing Actions

As mentioned in the introduction a deictic gesture is always performed to reference an
object more or less in the vicinity of the hand. To extract this fundamental information
from the gesture, both the movement of the hand represented by the trajectory and
symbolic data describing the object have to be combined. This combination is necessary
if several objects are present in the scene as only using the distance between the hand
and an object is not sufficient for detecting a pointing gesture. The hand may be in the
vicinity of several objects but the object referenced by the pointing gesture depends
on the direction of the hand motion. This area where an object can be expected in the
spatial context of an action is calledntext area

In order to have a variable context area we extend the model veci@q. 1) by
adding parameters for this area. It is defined as a circle segment with a search:radius
and a direction range, limited by a start and end angleds). These parameters are
visualized in Fig. 2. The angles are interpreted relative to the direction of the tracked
hand. Theapproachmodel consists of some time steps with increasing velocity but

T

search radius direction range

Fig. 2. The definition of the context area.

without a context area in the beginning later in the model a context area is defined with
a shrinking distance, and the hand slows down.



To search objects in a context area relative to the hand position the absolute position
(P, P,) of the hand is required. According to this demand the complete input data
consists of the observed motion dateand the coordinateB,, P,.

The spatial context defined in the models is incorporated in theMENSATION
algorithm as follows. In each time-step the trajectory and context data is sequentially
processed for every sample. At first the values of the sample are predicted based on
the activity of the hand, afterwards the symbolic object data in relation to the hand is
considered:

If there are objects in the context area of the sample at the current time ¢gpdex
one object is selected randomly. For adding this symbolic data to the samples of the
CoNDENSATIONWe extend the sample vectar (Eq. 2) by a parameter |[Odenoting a
binding with a specific object:

St = (,Ut»¢t;04tapt»|Dt) (4)

This binding is performed in thElpdatestep of the @ NDENSATION algorithm.
An object found in the context area is bound to the sample if no binding has occurred
previously. Once the the samplgcontains an object ID it will be propagated with the
sample using I§” = ID{™),.

Additional we extend the calculation of the sample weight with a multiplicative
context factorPs,,,;, representing how good the bound object fits the expected spatial
context of the model.

17D o p(zes)”) Poyms(IDy[st”) (5)

For evaluating pointing gestures we use a constant factaPdgr,. The value of
this factor depends on whether a previously bound object (i.e., with the correct ID)
is present in the context area or not. We u3g,,, = 1.0 if the expected object is
present and a smaller valu&,,.» = Pnissing if the context area does not contain the

previously bound object. This leads to smaller weigﬁi@) of samples with a missing
context so that these samples are selected and propagated less often.

When the threshold for the end probabiljtyrzd for one model is reached the pa-
rameter ID is used for evaluating the object the human pointed at. One approach is to
count the number of samples bound with an object. But this is an inaccurate indicator
as all samples influence the result with the same weight. Assuming a large number of
samples is bound with one object but the weight of these samples is small this will lead
to a misinterpretation of the bound object. A better method is to select an object bound
to samples with a high weight, as the weight of a sample describes how good it matches
the trajectory in the last steps. Consequently, we calculate for each abjdlee sum
po, of the weights of all samples belonging to the recognized mogdgilat were bound
to this object.

2 : T T p; €8 A (py > 0.9(bmax ANID; = O;
pOJ(/’[/’L) = {Ot ; EISE ¢ ( k ) ! J (6)

n=1
If the highest valugo, (1;) for the model is larger than a defined percentage €
30%) of the model end probability.,,q (1;) the objecO; is selected as being the object



that was pointed at by the 'pointing’ gesture. If the model has an optional spatial context
and for all objects the end probabilifyo, (x;) is lower than required the model is
recognized without an object binding.

The benefit of the described approach is a robust recognition of deictic gestures
combined with information about the referenced object. The system is able to detect
not only deictic gestures performed in different directions but also provides the object
the human pointed at.

6 Results

We evaluated the presented system in an experimental setup using 14 sequences of deic-
tic gestures executed by five test subjects resulting in 84 pointing gestures. An observed
person stands in front of a camera at a distance of approximately 2m so that the upper
part of the body and the acting hand are in the field of view of the camera. The person
points with the right hand at six objects (see Fig. 1), two on his right, three on his left
side, and one object in front of the person. We assumed perfect object recognition re-
sults for the evaluation. For this evaluation only the localization of objects was needed,
aspointingis independent of a specific object type. The images of size 320x240 pixels
are recorded with a frame-rate of 15 images per second. In our experiments real-time
recognition was achieved using a standard PC (Intel, 2.4GHz) running with Linux. The
models were built by averaging over several example gestures.

In the evaluation (see Tab. 1) we compare the results for different parameterizations
of the gesture recognition algorithm. For evaluation we use not only the recognition
rate but also the word error rate (WER) which is defined by WER#254#5  As
parameters for the @IDENSATIONwWe use N=1000 samples, the scaling factoend
p are betwee.65 and1.35 with variances = 0.15.

Context
nonedistancedirecte weighted
Prissing - 1.0 1.0 0.8[ 0.6[ 0.4[ 0.2[ 0.1[ 0.0
Correct 82 69 74, 72| 75| 77 76| 78 82
Insertion 81 9 5 5 5 5 6/ 5 18
Deletion 1 10 100 120 9| 7| 6| 6] 2
Substitution 0 5 0O O O O o0 o o
Word error rate| 97.60  28.6§ 17.820.216.7/14.314.313,323.8
Recognition rate98.8  82.2  88.1/85.7/89.391.7/90.492.897.6

Table 1.Recognition of deictic gestures

The second columrifone’) shows the results with the standard trajectory-based
approach of Black et al. [2]. Without incorporation of the symbolic context no separa-
tion between departing and approaching activities is possible, every straight motion is
interpreted apointing Therefore, this approach gives the highest recognition rate but
it also results in the highest WER due to a huge number of insertions. Note that there is
also no information about which object is referenced by the pointing gesture.

* using l:Insertion, D:Deletion, S:Substitution, E:Expected



By using the distance (colunidistance) between the approaching hand and the
surrounding objects mainly gestures approaching an object are recognized. But still a
high rate of insertions and even substitutions (i.e., a wrong object binding) is observed.
The substitutions show the disadvantage of a simple distance criterion that does not
incorporate the direction of the hand motion.

Using a directed context area (coluridirected’) we achieve a better recognition
rate and a lower WER. By introducing a weighting (columasighted) for samples
not matching the expected context, the recognition rates can be further increased while
reducing the WER. If samples not matching the context are delélgd §.., = 0) the
recognition rate is further increased but now also the WER is increased. This is due to
the fact that all samples with a missing context area are deleted and indirectly those
samples not matching the trajectory but with a bound object are propagated.

7 Summary

In this paper we presented an integrated approach to deictic gesture recognition that
combines sensory trajectory data with the symbolic information of objects in the vicin-
ity of the gesturing hand. Through the combined analysis of both types of data our
approach reaches an increased robustness within real time. The recognition result pro-
vides not only the information that a deictic gesture has been performed, but also the
object that has been pointed at.
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Description of 3D Pose Estimation at UniKarl

In order to estimate the 3d pose of a human being, UniKarl uses the ICP (Iterative Closest
Point) algorithm to fit an artificial 3d human model to the 3d sensor data of the stereo camera.

At the moment the 3d human model consists of 6 body parts (torso, head, left upper and lower
arm, right upper and lower arm) which are connected through 5 joints (neck, left and right
shoulder, left and right elbow). According to the 3d human model developed in RA2, each
body part is described by a “degenerated” cylinder, which is a field described by two parallel
ellipses having the same rotation. The following figure 1 tries to give an idea of how such a
field looks like. Figure 2 shows the overall 3d human body model.

Figure 1: “degenerated” cylinder Figure 2: resulting 3d human body model

In general, the ICP-approach is based on the best fit of a 3d geometrical model of the human
body to a set of 3d data points. These point clouds are acquired using the stereo camera device
(see report of WP 2.1). Figure 3 shows the basic idea of the ICP.

Figure 3: Fitting 3d camera data to the 3d human body model



The basic idea of the iterative-closest-point algorithm is to find a rotation and translation such
that the overall error between the model and the data points becomes minimal:

N
— 1 — -+ —
fBRE) = D_IIR@:) + il
i=1

Here, X ={x,} describes the points of the model and P ={p,} describes the data points of the
sensor. For each i, p, corresponds to x; and the ICP-algorithm searches for a rotation R and
translation 7 in order to minimize the above equation.

The most crucial (and computationally most expensive) part
is to set up the two lists of corresponding points. The
problem is, that the model is not described by a set of points
but rather by a geometrical field. To establish the
correspondence between a data point and the model, the
closest point of the model is chosen as depicted in figure 4.
There are some special cases which have to considered
separately, e.g. the data point lies over the “degenerated”

cylinder. Data points, which are too far away from the
field, are not taken into account because they should not
have any influence on the resulting rotation and
translation.

Figure 4: Finding the closest point
on the “degenerated” cylinder

The 3d human body model is composed out of several body parts and for each body part, the
ICP is used separately. To construct the point lists of closest points, each point is tested with
each body part and the nearest body part is chosen as the corresponding part. If a point has
equal distance to several body parts, the point is considered for each of these. After applying
the icp, an additional test has to be made in order to ensure, that the body parts are still
connected. This test is done by checking the position of the start point of the one body part
with the end position of the other body part.

The algorithm is an iterative one. In each cycle, the position of the model is improved until
the change of the position is small. For each cycle, the configuration of the 3d human body
model of the previous cycle is used. When the algorithm is called for the first time, the model
configuration of the previous frame is used. Summarizing, the algorithm works as follow:

start, using
model configuration
of time step t-1

construct list of apolv ICP for
closest points for |—— pply > check joints

each body part each body part

small change
of position?

Figure 5: Overview of on cycle of the algorithm



Figure 6: Iterative fitting of the model to the sensor data

Some first results can be seen in the two figures 6 and 7. The first row (figure 6) shows the
iterative approaching of the model to the 3d sensor data. As can be seen in the first frame, the
model isn’t well conditioned but with a few ongoing iterations the model adapts very well to
the sensory data.

Figure 7: Frames 70, 100, 130 out of a sequence.

The next pictures (figure 7) show three frames out of a sequence together with the
corresponding estimated pose. Again, the pose estimation works well. Each frame took
200ms-500ms on a Pentium IV, 30ms were needed for calculating the depth image. Most of
the time was used for establishing the closest point relation of each data point with its
corresponding cylinder. Beside the needed computing power, another problem is the tracking
of the arms. If an arm points towards the camera or if an arm is along the torso, the arm is lost
and has to be re-initialised. In order to make the tracking of the arms more robust, additional
features will be taken into account like skin-colour for tracking the hands separately and
feeding this additional information into the pose estimation.



Values of human kinematics
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1 Introduction

This report presents the outcome of a research of human kinematics. It was performed in the
course of a European project called Cogniron. It builds a base for a human attribute model and
a verification for pose estimating algorithms. As human physiognomy is an own field of
science, the first challenge was, to find out what parts of the kinematics are important and to
what level of detail. Due to the fact that estimation of postures relies on visual sensing it is
clear, that only the visible joints and the visible parts of the body are interesting. In a
geometric human model within Cogniron some of the joints were reduced to single ball joints,
even if they consist of several different types of joints like the shoulder, which consists of
shoulder joint, shoulder girdle and collarbone. After specifying the important joints the
maximum angles for all these joints where determined. The complete set of angles can be
found in 2.

Other important aspects of human kinematics are the average measurements of body parts and
the aspect ratio between body height and body parts. These measurements can be found in 3.
It is interesting and very useful, that the aspect ratios stay the same at different body heights.
Slight differences can be found between the aspect ratios of male and female humans. This
might become useful for distinguishing between the genders.

A glossary for the Greek and Latin terms can be found in [1].

2 List of maximum joint angles

Name of joint Type of motion Max. angle remarks
Cervical spine Lateral flexion 35° to all sides

Vental flexion 65°

Dorsal flexion 40°

Rotation 50° to all sides
Thoracic and lumbar |Lateral flexion 40° to all sides
spine Vental flexion 85°

Dorsal flexion 60°

Rotation 40° to all sides
Spine Lateral flexion 75° to all sides
(as whole) Vental flexion 150°

Dorsal flexion 100°

Rotation 90° to all sides
Shoulder joint with  |Flexion 170°
clavicle joint Extension 40°

Abduction 180°

Adduction 40°

Inside rotation 100°

Outside rotation 90°
Elbow joint Flexion 150°




Extension 10°
Pronation 90°
Supination 90°
Wrist Dorsal extension ~ 40° - 60°
Palmar refelexion  60° - 80°
Radial abduction  20°
Ulnar abduction 30° - 40°
Hip joint Flexion 140°
(standing) Extension 20°
Abduction 50°
Adduction 30°
Inside rotation 40°
Outside rotation 30°
Hip joint Abduction 80°
(at 90° defection) Adduction 20°
Inside rotation 40°
Outside rotation 50°
Knee joint Flexion 5°-10°
(stretched) Extension 120° - 150°
Knee joint Inside rotation 10°
(at 90° defection) Outside rotation 30° - 40°
Ankle joint Plantar flexion 30°
(standing foot) Dorsal extension  50°
Eversion 10°
Inversion 20°
Ankle joint Plantar flexion 40° - 50°
(hanging foot) Dorsal extension  20° - 30°

3 Lists of anatomic measurements

3.1 Explanation of measurements

This sub chapter gives an explanation of how the measurements are taken, which are stated in
3.2 and 3.3. The definitions are taken from DIN 33402 and divided into standing and sitting.
The different columns in 3.2 and 3.3 titled with P1, P5, P50, P95 and P99 show the statistic
distribution of measurements in mm. The value at P5 for example means that for 5% of the
population the measurement is lower and for 95% it is higher. The column % from kph gives
the percentage of the measurement compared to the over all body height. This value is nearly
independent from the body height and therefore builds a good base for measurement

estimations.

Measurements standing:

Name of Explanation Abbreviation
measurement
Body height Vertical distance from the platform to the highest point of | Kph
the head in the median plane.
Eye height Vertical distance from the platform to the inner angle of |auh
the right eye.
Chin height Vertical distance from the platform to the lower point of | Kih
the chin.
Acromial shoulder | Vertical distance from the platform to the lateral most sha

heiaht

jutting out point of the shoulder height of the right omo-




height plate.

Elbow height Vertical distance from the platform to the lowest point of | ebh
the perpendicular bend right elbow.

Knee height Vertical distance from the platform to the proximal kgh
furthermost point of the median side of the right
shinbone.

Foot height Vertical distance from the platform to the distal most Fh
jutting out point of the medial ankle of the right foot.

Span width of the | Maximum horizontal distance between the distal spwa

arms furthermost points of the middle fingers with maximum
sideways stretched arms and hands.

Head height Projective vertical distance from the highest point of the |koh
vertex in the median plane (Symmetry plane of the body)
to the lowest edge of the lower jaw in the median plane.

Pupil distance Straight-line distance between the center of both pupils. | Pd

Arm length Additive measurement: Sum of upper arm length (oal), |Ala

(additive) forearm length (ual) und hand length (hdl).

Upper arm length | Straight-line distance from the lateral most jutting out Oal
point of the shoulder height of the right omoplate to the
proximal furthermost point of the radius head.

Forearm length Straight-line distance between the proximal furthermost | Ual
point of the right radius head and the distal furthermost
point of the gripping appendix of the radius.

Hand length Straight-line distance from the center of a dorsal Hdl
connecting line between the distal points of both wrist
ankles to the distal furthermost point of the right middle
finger of the stretched right hand.

Middle finger Straight-line distance from the proximal bend groove of | Mfl

length the base joint of the right middle finger to the distal most
jutting out point of the tip of the right middle finger.

Thumb length Straight-line distance from the base of the right thumb to | DIf
the distal most jutting out point of the tip of the stretched
right thumb.

Projective leg Differential measurement: Body height (kph) — Blp

length Fundament-head length (stl)

Projective thigh Differential measurement: Projective leg length (blp) — | oslp

length knee height (kgh)

Lower leg length Differential measurement: knee height (kgh) — foot Usl
height (fh)

Foot length Straight-line distance from the hindmost point of the right | fl
heel to point of the first or second toe, which is the
furthermost with standing foot.

Head width Largest horizontal width of the head in a frontal plane kob
perpendicular to the median plane, meaning the straight-
line distance between the two lateral most jutting out
points at the side of the head in a frontal plane.

Shoulder width Horizontal distance between the two lateral most jutting | Sbd

(bideltoidale) out points of the shoulder height of the lateral shoulder
contour forming delta structure.

Elbow width Straight-line distance between the two furthermost Ebb
points of the joint knots of the right upper arm bone.

Direct hand width | At the right hand measured straight-line distance from Hdb
the lateral furthermost point of middle hand bone Il in the
area of the forefinger base limb to the lateral furthermost
point of the middle hand bone V in the area of the little
finger base limb of the stretched right hand.

hand width with Perpendicular to the hand axis measured projective Hdbd




thumb

distance between the lateral furthermost point of the
middle hand bone | in the area of the thumb base limb
and the lateral furthermost point of the middle hand bone
V in the area of the little finger base limb of the stretched
right hand.

Hip width

Largest horizontal distance between the two lateral
furthermost points of the hip.

Hueb

Knee width

Straight-line distance between the two joint knots of the
right thigh bone with the largest distance while the knee
is bend.

Kb

Measurements sitting:

Name of Explanation Abbreviation
measurment
Fundament-head | Vertical distance from the seat to the highest point of the | Stl
length vertex in the median plane.
Eye height (sitting) | Vertical distance from the seat to the inner eye angle of |Auhs
the right eye.
Acromial shoulder |Vertical distance from the seat to the lateral furthermost |shas
height (sitting) point of the shoulder height of the right omoplate.
Elbow height Vertical distance from the seat to the lowest point of the |ebhs
(sitting) perpendicular bend right elbow.
Fundament knee | From the backrest measured horizontal distance of the | gkl
length dorsal furthermost point in the area of the fundament to
the distal furthermost point of the right knee at the lower
end of the kneecap.
Knee height Vertical distance from the platform to the highest point | knh
(sitting) on the upper side of the right thigh bend perpendicular to
the lower leg in the area of the joint knots of the thigh
behind the upper edge of the kneecap. Measured while
sitting.
Lower leg length Vertical distance from the platform to the lower side of | usfl

with foot

the right thigh bend perpendicular to the lower leg right
behind the hollow of the knee, measured while sitting
Meaning the distance between the platform and the
seat.

3.2 Values female

Name of measurment Abbr. |P 1 P5 |P50 |[P95 (P99 |% from kph
Body height kph 1537 [1576 (1680 |1770 [1804 (100,00

Eye height auh 1433 |1471 |1568 |1655 |1695 93,35+ 0,13
Chin height kih 1330 |1368 |1471 |1553 |1595 |87,16 £ 0,60
Acromial shoulder height sha 1249 (1279 (1374 (1454 [1502 81,59 + 0,50
Elbow height ebh 936 (960 1039 [1107 (1133 |61,55+ 0,82
Knee height kgh 394 [411 453 |493 512 |26,63 + 1,11
Foot height fh 53 59 72 84 90 04,06 + 0,65
Span width of the arms spwa |1502 |1534 |1659 |1775 |1819 |98,52 + 1,47
Head height koh 182 188 (205 223 [228 (12,14 +0,38
Pupil distance pd 52 54 60 65 67 03,51 £ 0,14
Arm length (additive) ala 656 (672 |731 |784 |[804 (43,28 +0,83




Upper arm length oal 274 |(282 |310 |336 |[350 |18,29 +0,58
Forearm length ual 214 (219 |243 (265 |275 14,31 + 0,54
Hand length hdl 155 162 |178 [|194 198 10,48 + 0,44
Middle finger length mfl 64 68 75 83 85 04,41 + 0,26
Thumb length dif 53 56 66 76 81 03,81 + 0,42
Projective thigh length oslp |275 [294 |337 380 (394 [19,52+1,79
Lower leg length usl 319 (339 |379 (419 (432 22,12+ 1,46
Foot length fl 221 |227 |243 |263 |270 14,53 +0,24
Head width kob 136 [139 [147 |156 [161 08,81+ 0,05
Shoulder width (bideltoidale) |sbh 360 [371 402 |447 [467 24,04 +0,92
Elbow width ebb 53 56 61 67 70 03,60 + 0,17
Direct hand width hdb 67 70 76 82 86 04,49 + 0,14
hand width with thumb hdbd |80 84 92 101 |105 05,43 £ 0,25
Hip width hueb [303 [311 (350 (392 (405 [20,61+1,22
Knee width kb 71 76 86 95 99 04,98 + 0,37
Fundament-head length stl 823 840 (891 [941 960 (53,26 +0,26
Eye height (sitting) auhs |711 [733 |779 829 (854 (46,49 +0,29
Acromial shoulder height shas |[510 (542 |583 |634 (647

(sitting) 34,52 + 1,32
Elbow height (sitting) ebhs [190 203 |242 (286 302 [13,95+%1,90
Fundament knee length gkl 530 548 (591 [635 |657 [35,08+0,70
Knee height (sitting) knh 458 1480 |519 |556 [576 |30,64 + 0,81
Lower leg length with foot usfl 378 (396 |433 |471 (488 |25,53+ 1,01
3.3 Values male

Name of measurment Abbr. |P1 P5 |P50 [P95 (P99 |% from kph
Body height kph 1651 |1696 |1802 |1911 |1988 |100,00

Eye height auh 1534 [1578 |1678 |1781 [1855 |93,07 + 0,14
Chin height kih 1427 [1472 |1574 |1683 [1756 |87,16 + 0,82
Acromial shoulder height sha 1340 (1378 |1476 [1577 |1635 (81,71 + 0,68
Elbow height ebh 998 [1022 [1106 [1192 [1231 [61,11+ 1,06
Knee height kgh 431 |446 |489 |539 |557 26,94 + 1,05
Foot height fh 60 66 78 91 95 04,15 + 0,56
Span width of the arms spwa (1657 (1703 (1820 (1944 (2001 (100,88 + 0,68
Head height koh 200 [204 (223 239 (246 |12,26+0,24
Pupil distance pd 54 58 63 69 72 03,45 + 0,17
Arm length (additive) ala 729 |743 |795 |859 |900 44,26 +0,57
Upper arm length oal 299 309 (339 |370 [390 [18,63 +0,63
Forearm length ual 231 |245 |264 289 (299 [14,55+ 0,57
Hand length hdl 172 [181 [194 210 (217 |10,71+0,29
Middle finger length mfl 72 76 82 91 96 04,54 + 0,20
Thumb length dIf 61 64 73 86 91 04,00 + 0,40
Projective thigh length oslp 302 318 365 |410 |435 [19,69+ 1,58
Lower leg length usl 345 |446 |489 |539 |557 25,63 + 3,65
Foot length fl 239 (248 (267 |290 (303 14,77 +0,35
Head width kob 142 [146 |154 |164 |[170 |08,58 + 0,03
Shoulder width (bideltoidale) |[sbh 407 |420 |455 |497 |514 25,17 +0,68




Elbow width ebb 62 66 71 77 79 03,90 + 0,14
Direct hand width hdb 77 80 87 95 97 04,80 + 0,15
hand width with thumb hdbd |94 98 108 120 126 05,94 + 0,29
Hip width hueb (302 |308 [337 |372 |387 [18,66+ 0,65
Knee width kb 82 88 96 105 [109 (05,24 £ 0,26
Fundament-head length stl 871 885 (943 1000 (1024 |52,40 + 0,29
Eye height (sitting) auhs |[751 |765 |821 (872 |894 |45,45+0,26
Acromial shoulder height shas [553 |567 |619 |667 |687

(sitting) 34,05 + 0,74
Elbow height (sitting) ebhs [185 203 247 (296 |309 |13,09+2,14
Fundament knee length gkl 556 |577 |618 |666 |689 (34,21 + 0,59
Knee height (sitting) knh 498 [515 |556 |606 |627 |30,77 £0,77
Lower leg length with foot usfl 412 |436 (476 |519 |541 (26,06 + 1,10

[1]A. Freisinger and K. Pfeiffer. Glossary of human kinematics. /P4 internal report, 2004




Glossar for human anatomy

Greek / Latin

English

German

Directions of cutting

Schnittrichtung

transversal = horizontal

e atright angles to the long axis of

the body
e from left to right, parallel to the
floor

e waagrecht (parallel) zur ebenen
Bodenflache
e von links nach rechts

Sagittal = ventrodorsal
= anterior — posterior

e in a plane perpendicular to the
frontal plane
e from behind to the front

e waagrecht (parallel) zur ebenen
Bodenflache
e von vorne nach hinten

Longitudinal = vertical

e parallel to the long axis of the
body or organ

e atright angles to the floor, from

up to below

e senkrecht zur ebenen
Bodenflache

Planes (Sections)

Ebenen (Schnitte)

transversal = axial

e parallel to the floor

e devide the room into above and

below
e spread out by sagittal and
transversal axes

e waagrecht zur Bodenflache

e teilen den Raum in oben und
unten

e von sagittaler und transversaler
Achse aufgespannt

Sagittal e atright angles to the floor e senkrecht zur Bodenflache
e devide the room into left and e teilen den Raum in links und
right rechts
e spread out by sagittal and e von sagittaler und vertikaler
longitudinal axes Achse aufgespannt
Frontal at right angles to the floor senkrecht zur Bodenflache

devide the room into front and
behind

e spread out by transversal and
longitudinal axes

teilen den Raum in vorne und
hinten

e von transversaler und vertikaler
Achse aufgespannt

median (sagittal)

Special case:

One of the sagittal planes, which
devides the human body in two
(nearly) symmetrical hafts

Sonderfall:

Diejenige Sagittalebene, die den
Menschen in zwei (fast) symmetrische
Halften teilt

General terms of Direction and
Position

Allgemeine Richtungs- und
Lagebezeichnung

e supra- e above e oben, oberhalb, tber
e infra- e below e unten, unterhalb, unter
e  anterior, -ius e infront (of) e vorne

e  posterior, -ius e  behind (to the back) e hinten

e internus, -a, -um e within e innen gelegen

e externus,-a,-um | e  out of, external e auBen gelegen

e dexter, -tra, -trum | o right e rechts

e sinister, -tra, -trum | o left e links

e cranialis, -e e towards to head e schéadelwarts

e caudalis, -e e towards the tall e steiBwarts

e ventralis, -e e towards the belly e  bauchwarts

e dorsalis, -e e towards the back e rlickenwarts

e medianus, -a, -um | ¢ inthe middle e in der Medianebene,

mittelsténdig

e medialis, -e e towards the middle of the body e auf die Medianebene zu,
e laterialis, -e e towards the side of the body mittelwérts
e von der Medianebene weg,
seitlich
e inter- e (in) between e zwischen
e intra e within e innerhalb
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Designations for Directions and
Positions of the Extremities

Lagebezeichnungen an den
Extremitaten

distalis, -e
proximalis, -e

towards the free end of the
extremity
towards the root of the extremity

rumpffern
rumpfnah

e palmaris, -e e towards the palm of the hand e zur Handinnenflache hin
e dorsalis, -e e towards the back of the hand e zum Handrlicken hin
e radialis, -e e on the radial side (radius = spoke | ®  zur Speiche hin
e ulnaris, -e of the wheel) e zur Elle hin
e onthe ulnar side (ulna = larger
bone of the forearm)
plantaris, -e towards the sole of the foot zur FuBsohle hin
dorsalis, -e towards the upper surface of the zum FuBricken hin
foot
e tibialis, e e on the side of the shinbone e zum Schienbein hin
e fibularis, -e (= e on tne side of the calfbone e zum Wadenbein hin

peronaeus, -a, -
um)

Action of Muscles and Joints

Funktionen von Muskeln und

Gelenken
e Extension e straigthen an extremity along a e  Strecken (Dehnen)
e Flexion (main) axis e Beugen (Biicken / Neigen)
e Bend an extremity along a (main)
axis
Abduction e movement to the side, away from | ¢  Bewegung vom Kdrper
Adduction the body / main axis (Hauptachse) weg
e movement towards the centre of | ¢ Bewegung vom Kérper
the body / main axis (Hauptachse) hin
e  Pronation e movement of the forearm to the e Wendebewegung des
e  Supination inner side (e.g. to cut bread) Unterarmes nach innen (Brot
e movement of the forearm to the schneiden)
outer side (e.g. to hold a dish) e Wendebewegung des
Unterarmes nach auBen (Suppe
16ffeln)
Eversion e rotation of the feet to the side e Auswaértskantung der FlBe
Inversion along an axis from the tip to the (entspricht Pronation)

heel
rotation of the feet to the centre
along an axis from the tip to the
heel

Einwartskantung der FiBe
(entspricht Supination)

Anteversion
Retroversion

move an extremity straight
forward from the frontal plane
move an extremity straight
backward to the frontal plane

Vorheben von Arm / Bein (An-/
Abwinkeln nach vorne)
Ruckfuhrung von Arm / Bein (An-
/ Abwinkeln nach hinten)

Rotation

circular movement round an axis
- inwards: movement from
neutral position to front and
centre

- outwards: counter movement
(to front and side)

Drehen / Kreisen um eine Achse
- Innenrotation: Bewegung aus
der anatomischen
Normalstellung erst nach vorne
and dann einwérts

- AuBenrotation: entsprechende

Gegenbewegung
e  Circumduction e circular movement ( of the o  Kreisfdrmiges Herumfihren ( des
thumb) Daumens)

Elevation

Lifting up an extremity over 90° (
to vertical main axis

Hochheben einer Extremitat Uber
90°! ( zur vertikalen Hauptachse)
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Main parts and regions of the body

Haupteile und wichtige Regionen
des Korpers

e Caput e head e  Kopf
e Facies e face e Gesicht
e  Collum / Cervix e neck e Hals
e Nucha ® nape e Nacken
e  Truncus e frunk e Rumpf/Stamm
e Columna e vertebral column / spine e  Wirbelsaule
vertebralis
e Thorax / Pectus e thorax/chest/rib cage e  Brustkorb
e  Dorsum e  back e Rdicken
e Abdomen/Venter | ¢« abdomen / belly e Bauch
e Pelvis e Pelvis e Becken
e  Membrum e Upper extremity / upper limb /arm | e  Obere Extremitdt/ Arm
superius
e Braichium e upper arm e  Oberarm
e Cubitus e elbow e Ellenbogen
e Antebrachium e forearm e  Unterarm
e Manus e hand e Hand
e Membrum inferius | ®  Lower extremity / lower limb/leg | Untere Extremitét / Bein
e Femur e thigh ( bone) e Oberschenkel (-knochen)
e Genu e knee (please note as well: Genu | ¢  Knie (aber auch: Genu =
= bend) Biegung)
e Crus e (lower) leg e (Unterschenkel
e Pes e foot e FuB
e Akra e  Sticking —out parts of the body, e Vom Kérper abstehende Teile,
acra (e.g. nosem outer ear, Akren (z.B Nase, Ohrmuschel,
fingertips) Fingerspitzen)
Bones Knochen
Basic Terms / Points for Orientation Grundbegriffe / Orientierungspunkte
e Articulatio e joint e  Gelenk
e  Circumferentia e  cirumferent articular surface e herumfihrende Gelenkflache
e  Condylus e condyle e  Gelenkfortsatz
e Epiphysis e Epiphysis (of a joint) e  Gelenkfortsatz ( langer
e Pineal gland Réhrenknochen) [im deutschen
Gebrauch: Epiphyse (wértlich:
Zuwuchs, Ansatz)]
e Zirbeldriise = Corpus pineale
Upper Extremity Obere Extremitét (Arm)
Bones and Cartilages Knochen und Knorpel
e  Humerus e humerus /[upper arm bone] e  Oberarmknochen
e Rdius e Radius e  Speiche
e Ulna e Ulna e Ele
e Qlecranon e elbow/ olecranon e Ellenbogen(hécker)
e Manus e Hand e Hand
e Os scaphoideum | e scaphoid bone e Kahnbein der Hand
e Os triquetrum e triquetral bone e Dreiecksbein
e Os pisiforme e pisifrom bone e Erbsenbein
e Os trapezium e trapezium bone e groBes Vieleckbein
e Os trapezoideum | e trapezoid bone e  kleines Vieleckbein
e Os capitatum e capitate bone e Kopfbein
e  Os hamatum e hamate bone e Hakenbein
e Ossasesamoidea | ¢ sesamoid bone e Sesambein
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Lower Extremity (leg)
Bones and Cartilages

Untere Extremitéten (Bein)
Knochen und Knorpel

e Femur e thigh bone / femur e Oberschenkelknochen
e Fibula e calfbone / fibula e Wadenbein

e Patella e kneecap e Kniescheibe

e Tibia e shin(bone) / tibia e Schienbein

e Pes e foot e FuB

e Talus e anklebone e  Sprungbein

e (Calcaneus e heel bone e Fersenbein

e Os naviculare e navicular bone e Kahnbein des FuBes

Os cuneiforme
mediale

medial cubeiform bone

inneres Keilbein

Os cuneiforme
intermedium

¢ intermediate cuneiform bone

e mittleres Keilbein

OS cuneiforme
laterale

e |Lateral cuneiform bone

e AuBeres Keilbein

Os cuboideum

e (Cuboid bone

o  Wirfelbein

Vertebral column Wirbelsdule
e \Vertebra e vertebra e Wirbel
e Vertebrae e vertebra of the neck e Halswirbel
cervicales
e Vertebrae e vertebra of the chest e  Brustwirbel
thoracicae
e Vertebrae e vertebra of the loin e Lendenwirbel
lumbales
e Vertebra e first vertebra (of the neck) e Tréager (erster Halswirbel)
cervicalis | = Atlas
e \Vertebra e second vertebra (of the neck) e Dreher (zweiter Halswirbel)

cervicalis Il = Axis
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REAL-TIME 3D HAND AND ARM TRACKING FROM MONOCULAR COLOR IMAGES
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ABSTRACT needs to be able to track human hands for recognizing ges-

This paper presents a system for tracking a human in 3DtUres, our aim is to develop a vision-based apprpach that
based on a videostream from a single camera. The al-allows us to track the upper body part of a human in 3D.
gorithm integrating various image cues in a probabilistic As we intend to track human-robot interactions in real-
framework can be adapted to the available computationaltime on a mobile robot, only limited computational power is
resources. Through using color information for modeling available. This limitation and the need to enable tracking of
clothing as well as skin color for hands and head, an im- humans with arbitrary clothing rules out approaches using
proved tracking performance is realized. The tracking usesStereo vision. Such approaches require image disparities to
joint angle constraints derived from human kinematics for successfully carry out the computationally heavy depth cal-
the prediction of the body configuration but contains no mo- culation. Instead, we use a 3D model of the upper human
tion priors to enable the tracking of arbitrary motions. With Pody and map this model to the 2D image data. For the
an appropriate configuration, the algorithm runs on a |aptoplimbs we use several cues derived from color images and
in real-time and tracks the upper body of a human and oneskin color information is used as a cue for detecting hands
arm. This makes it suitable for the recognition of gestures @nd faces. Tracking the 3D model over time is realized us-

on a mobile robot enabling natural human-robot interaction. iNg & probabilistic algorithm. Special emphasis is placed
on the scalability of the framework to enable the real-time

calculation of a 3D body configuration. First results demon-
strate the suitability of our approach for tracking hand ges-
gtures using a standard laptop.
The paper is organized as follows: Section 2 gives an
overview of related work. The individual image cues and

1. INTRODUCTION

A large research area within computer vision is concerne
with tracking humans. A rather coarse model of the human
body is usually adopted in surveillance applications or for L i ) _ _ _
recognizing large-scale activities. Obviously, the recogni- the probgblhstlp tracking method is described in Section 3.
tion of small-scale activities that are related to movements '€ configuration of the overall framework to enable real-
of individual body parts requires a finer human body model. fime tracking and the results obtained are the topic of Sec-
Especially the recognition of hand gestures attracts muchtio" 4. The paper concludes with a summary in Section 5.
interest as humans use their hands frequently, e.g., to com-
municate information. Many vision-based approaches for 2. RELATED WORK
gesture recognition have used 2D image data to track hu-
man hands. However, gestures are performed in three di-One of the first applications to track a human body in real-
mensions and for their correct recognition this third dimen- time using a single camera is the PFINDER system [2]. The
sion can be crucial. For example, imagine a human pointingapplied body model is rather coarse and tracking provides
to one out of many objects on a table. Here, the object thatonly the 2D shape with information about the position of
the human pointed at may be difficult to identify without 3D head, hands, and feet.
information about the deictic gesture. Additionally, the fact Tracking of a human in 3D with limited computational
that the gesture perceived was a pointing gesture may not be&esources on a mobile robot was already described in 1996
detectable without knowledge of the arm configuration. by Kortenkamp et al. [3]. However, this approach used
Our goal is to realize a robot companion that has natural depth information from a stereo camera to track the 3D body
interaction capabilities and can recognize typical gesturesmodel. In more recent approaches, the skin color is used as
occurring in human-human interaction. In order to obtain an additional cue to get the 3D hand position (see, e.g., [4]).
images of the humans interacting with it, our mobile robot As the depth calculation from stereo images comes at a
BIRON [1] is equipped with a pan-tilt camera. As BIRON high computational cost and relies on the presence of image



disparities, the use of a monocular approach for estimating2) The Ridge Cue uses the normalized second partial
the 3D configuration is a promising alternative. One such derivatives (see Fig. 1) to find elongated structures of a spec-
approach for tracking a detailed 3D human body model wasified thickness in the image, also similar to [5]. It suppresses
proposed by Sidenbladh [5]. It is based on a variety of gray- point-like edge features by looking at a humber of feature
level image cues that are combined using a patrticle filtering points for edges parallel to the expected limb orientation
algorithm for tracking the motions of a human. To cope and missing edges in perpendicular direction. The Ridge
with the huge search space, motion priors are used to preCue gives a coarser estimate of the limb position than the
dict the changing 3D body configuration. Following Siden- edge cue, but it produces less false maxima. The Ridge Cue
bladh’s work, Sminchisescu used a more precise modelingdepends on the size of the limbs in the image. This means
of the 3D body model [6], but the computational time re- that it will only provide appropriate results if the observed

quired prohibits its use for real-time tracking. limb is in a particular distance to the camera. But as the
distance between the person and the camera is not fixed, the
3. TRACKING A 3D HUMAN BODY MODEL size of the limbs observed in the picture may vary. Creating

a Gaussian image pyramid allows the Ridge Cue to adapt to
In the following we describe our framework for tracking a different distances by selecting the correct resolution level
3D human body model. Our architecture is based on Siden-n the pyramid based on the current distance of the model.
bladh’s approach [5]. The pose of an articulated 3D body p
model is rated to comply with the current image of the per- &
son tracked depending on several image cues. Merging the

likelihood of the cues gives an estimation for each pose. _;_: j| e ; Tl )
search for the best model can be seen as an optimization prof=Ss=s e sk l.,..,.?u
cess of finding the global maximum in the high-dimensional SSE# : 5

feature space of the joint angles. According to a proba- &35
bilistic approach using particle filtering, the systems finds =
a good-fitting pose of the body model.

Fig. 1. First partial deriva- Fig. 2. Result of skin color

. tive in Y direction segmentation
3.1. Modeling the Appearance of Humans g

3) The Mean Color Cue substitutes Sidenbladh’s Flow
Eue, as the latter has disadvantages in terms of its ro-

ustness. Sidenbladh’s Flow Cue samples pixels at corre-
sponding positions on the limbs in successive grey level im-
ages. Repeating pixel patterns on a limb can be found, but
changes in the appearance of a limb (e.g., shadowing, folds
forming in clothing while moving) pose problems. Further-
more, as the Flow Cue only relates to the estimated pose of
the body in the previous time step, small tracking errors are
accumulated and the limb tends to drift.

In contrast, the Mean Color Cue deals with these prob-
lems by using multiple mean color values for each limb
(see Fig. 3) that are adapted over time. Each mean color
value is calculated by averaging over the color value of N
pixels sampled from the 2D polygon of the backprojected
1) Similar to [5], theEdge Cueuses the first partial deriva-  limb. Sampling is performed for each so-called blob using
tives that are sensitive to strong changes in contrast. Forreca 2D Gaussian distribution around a center position. The
ognizing human body parts mainly the presence of edges isnumber of blobs and their center positions are chosen based
important, not their magnitude. All partial derivative images on the limb type.
are, therefore, scaled with a nonlinear localized normaliza-  For likelihood calculation, the actual mean color value
tion function to smooth low energetic edges stemming from for each blob is compared to its slowly adapted mean value.
textured backgrounds and emphasize stronger ones. Thélpdating is realized using the mean color values of the
Edge Cue provides an accurate match for the position ofblobs belonging to the estimated correct pose. To deal with
arm limbs by comparing the direction of the edges in the tracking errors and changes in the appearance of the human,
camera image with the expected orientation of the limb at awe use a sliding adaption process and update the mean color
number of feature points. only with a small fraction.

We use an articulated body model consisting of cylinders
with ellipsoid cross sections to represent the appearance o
a human body. Joint angle limits model the physical con-
straints of the human body. A typical model of an upper
body contains up to 23 degrees of freedom, a coarse full
body model up to 34 degrees of freedom [5].

To reduce the numerical complexity for the following
calculations, the 3D body model is backprojected into the
image plane using a pinhole-camera model. This yields an
approximate 2D representation of the 3D body model con-
sisting of a 2D polygon with image coordinates for each
limb. The estimation of a single pose is done by calculating
likelihoods for each limb of the body model with up to four
image cues:



points for a single cue, as this does not change the number of
likelihoods that are multiplied to obtain the pose likelihood.

3.3. Probabilistic Tracking

The challenge of tracking a human can be formulated as
finding a maximum in the high-dimensional joint angle
Fig. 3. Position of blobs for mean color cue space. The distribution is represented by a set of particles
(see Fig. 4) that are propagated using particle filtering.
) ) ) Every particle represents a different pose of the human
Overall, the Mean Color Cue gives a very reliable esti- body. The propagation over time is accomplished by adding

F“"f‘“ol"‘ for tge l:mpﬁoﬁ't'gn’ as colc(;r 'ﬁ a stroqg (;]haracter— Gaussian-shaped noise to all joint angles. Predefined mo-
Istic. t:gg. iea I\INIt' S ? owing and ¢ aﬁges In the appearq, primitives or an overall dynamic model are not used to
ance. itionally, it is less sensitive with respect to minor 110 +he tracking of arbitrary motions.

disturbances and is therefore more robust than the original The estimation of the best fitting model is realized by

Flow Cue. averaging over the distribution of all particles with respect

4) The Skin Color Cue uses a skin color segmentation [7] to their likelihood. The outcome of this is one single pose

to gain information about the position of the hand and the (see Fig. 5), from which the 3D trajectory data can be ex-
head. The skin color model is initialized using a Viola-Jones tracted (example in Fig. 6) and which also serves as refer-
face detector (see [8]) and provides a binary skin image ence model for updating the mean color values.

(see Fig. 2). Similar to the Mean Color Cue, sample pix-
els are selected from Gaussian distributed blobs. The like-
lihood of a limb is calculated as the ratio of pixels being
classified as skin and non-skin.

The current implementation does not take advantage of
the probabilistic modeling of skin (see [7] for details). Nev-
ertheless, this cue is very useful in environments without
strong lighting variations. If lighting conditions change
constantly, the adaptation of the skin color model can be
used at the cost of an additional computational load. Fig. 4. 100 best particles, Fig. 5. Estimation of the cur-

colored by their likelihood rent pose

3.2. Combination of Likelihoods With linear scaling of the computational complexity cor-

The Edge, Ridge, and Mean Color Cues generate a numbefesponding to the number of particles, the robustness and
of likelihoods depending on the number of feature points quality of the tracking can easily be adopted to a specific
or blobs. These likelihoods have to be combined to obtain hardware or real-time requirements.

a likelihood for the alignment of a single limb. The Skin

Color Cue provides just one likelihood per limb (hand or 4. CONFIGURATION AND RESULTS FOR

face). Subsequently, the limb likelihoods are used to com- REAL-TIME TRACKING

pute a single likelihood for each pose of the body model.

Sidenbladh assumes that the cues and limbs are indefor the intended application of pointing gesture recognition
pendent, hence she calculates the overall likelihood for aon a mobile robot, we track only the upper body with the
single particle proportional to the product over all feature right arm assuming deictic gestures are performed with the
points, all image cues, and all limbs. On the basis of this right hand. In our current model the hand is fixed to the
multiplication, a single poorly rated feature point can drag lower arm and the head is fixed to the torso leading to a
down the whole likelihood for a pose. This, in turn, leads model with 10 degrees of freedom. This reduction of the
to a peaked probability distribution that is harder to evaluate model flexibility is acceptable for tracking a human that is
as the correctly estimated pose may be represented by onlpriented roughly towards the camera and performs commu-
a small percentage of all particles. nicative gestures.

In our approach, in contrast, all likelihoods for a sin- For the implementation on BIRON we could have used
gle cue on each limb are averaged, smoothing the effect ofthe position of a person relative to the robot from our multi-
outliers. The following multiplication over all cues and all modal person tracking system [8], but experiments have
limbs is therefore less problematic. A further advantage is shown that it is sufficient to track the skin-colored head
the higher flexibility when changing the number of feature and link the torso to the head. Consequently, no cues are



calculated for the torso to save computing time. The Skin 5. SUMMARY

Color Cue is used for head and hand with 10 feature points

each, while the two arm limbs are tracked by combining We presented a probabilistic framework using a variety of
the Edge, Ridge, and Mean Color Cue. For calculating theimage cues to track a human in 3D based on 2D image data.
Mean Color Cue we use three blobs per arm limb, each with Robust tracking is achieved by the use of adaptive color im-
10 feature points. The Edge Cue uses 20 randomly sampled@ge cues for clothing and skin in addition to ridge and edge
points per limb, the Ridge Cue 30. These parameters havecues. The framework is flexible as it can be configured for

been found to be an acceptable tradeoff between robustneskgal-time performance with limited computational resources
and computational load. by tracking only a subset of the human body. First results

Initialization of the overall torso position is done us- reaching a framerate of 7.5 Hz demonstrate its suitability
ing our implementation of the Viola-Jones face detector for the recognition of pointing gestures on a mobile robot.
(see [8]). Currently no automatic initialization of the arm
and hand is implemented, but this could be done using in- 6. REFERENCES
formation from skin segmentation.
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